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ABSTRACT

[C59D

This report considers the dynamic stability of a piecewise continuous
beam accelerated through space by a gimbaled, pulsating end thrust and is
in essence an investigation into the stability of transverse vibrations
induced by the periodically~-varying portion of the end thrust. A beam
geometry and environment was assumed which could approximate a rocket
vehicle. Initial conditions, damping, and longitudinal coupling effects
were considered. The analysis was performed on a uniform beam and the

method extended to include stepped beams.

The results indicated that parametric instability could develop at
arbitrarily small thrust values when damping was neglected. It was deter-
mined that damping eliminated instabilities which existed at near zero
thrust values and that critical thrust parameters could be obtained. Re-

sults indicate that modern rocket vehicles could be unstable for some

parameter combinations. &M’U» oY
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NOTATION

Longitudinal acceleration
Beam cross—sectional area

Cross sectional area of beam section (1) and (2)
respectively

Nondimensional area ratio AllAz

Boundary value constants depending upon initial
conditions - uniform beam analysis

Column matrix m of c's

Length of beam section (1)

Viscous damping coefficient (transverse vibrations)

Square array of elements appearing in characteristic
determinant

Bending stiffness of uniform beam

Displacement function at time t = 0

Velocity function at time t = 0
Square matrix
Coefficient in the J*® row and k™ column of matrix [F]
2
R AU &
Loggitudinal damping factor
Square matrix
Coefficient in the jtP row and k*® column 6f matrix [G] B
Square matrices of ij

= Coefficient in the jth row and k! column of matrix
[H]s, 8 = 1,2,..0

/-1

4



H{a)

h(x~-c)

P*
Pr

()

qp>9p

Function formed from A(a) to eliminate singularities

=1 X a unit step function
X

=0

2c
<c
Identity matrix

Area moment of inertia.

Area moment of inertia at beam section (1) and (2)
respectively

Nondimensional moment of inertia ratio I;/Iy

Constants evaluated so as to eliminate singularities
of H(a)

Directional control factor determining thrust vector
gimbal angle

Length of uniform beam
Mass per unit length of beam

Mass per unit length of beam section (1) and (2)
respectively

Total mass of the beam

Moment distribution in beam; also, range of index m
in evaluation of Aj(Fjj)

Number of bending degrees of freedom assumed in numerical

analysis

Lateral force on beam arising from component of thrust

due to gimbaling

Axial force distribution in beam

Damped axial force distribution in beam
Product of diagonal elements of A(a)

A column matrix

Rigid-body generalized coordinates

nth bending generalized coordinate
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(u)

Yk

u(x,t)

Modulus of z + V22 = 1

Sum of nondiagonal elements of A(a)
Real-time variable

Amplitude of constant thrust

Amplitude of sinusoidal varying thrust

Uniform beam nondimensional thrust parameter TolZ/EI

Stepped beam nondimensional thrust parameter

A column matrix

kth element of matrix u

Longitudinal displacement of particles of beam
measured in Lagrangian coordinate system

Transverse shear distribution in beam

Lagrangian coordinate defining position of particles
in unstrained beam relative to one end of the beam

x-coordinate corresponding to the location of direction-
sensing element in the beam

Function of x

Lateral displacement of axis of beam from fixed
reference line

Characteristic value = cos2wa

2w F,.
cos 2w 33

m/AE

Characteristic exponent whose value indicates the
stability of a system whose motion is represented
by linear differential equations with periodic
coefficients

Argument of z + vz2 - 1

=& -1
IR =<
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= 1,/1,

Dirac delta function

Transverse damping factor = L

1
Value of the infinite determinant of coefficients

obtained from series expansion of Xk(r)
= A(a) . (-a?' + F"l"l)

A small quantity

o

Gimbal angle, equal to rotation of thrust vector from
a tangent to the beam-deflection curve

l’-l»
Uniform beam frequency parameter = wﬁ mEI
2 m2e*

Stepped beam frequency parameter = w
o EI,

x/2

Nondimensional coordinate

Nondimensional coordinate = c/&

/%

Nondimensional coordinate c

x
Nondimensional time variable = mlt

Mode shape of nth vibration mode of uniform free-
free beam

A function defining the longitudinal force distribution
in a uniform beam arising from the varying thrust component
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CHAPTER 1

INTRODUCTION

The theory of dynamic stability of elastic systems has been defined
as "the study of vibrations induced by pulsating parametric loading"
(ref. 1). Extending this definition, the analysis of the dynamic
stability of beams may be defined as the study of transverse motion induced
by a pulsating longitudinal force. This investigation considers the dynamic
stability of free-free beam subjected to a gimbaled thrust of periodically-
varying magnitude including the effects of longitudinal and transverse..

damping and arbitrary initial conditions.

For the most general model configuration, Fig. 1 describes a slender
piecewise continuous beam accelerated through space by a gimbaled thrust,
T, + T{ cos@t. T, and Ty are thrust values associated with the constantiy
applied thrust and the amplitude of the periodically-varying thrust,
respectively. For rotational control, an attitude sensor located at beam
station x = G, denoted as Xg» controls the thrust gimbal angle, 6, Sy means
of a simple feedback system. Internal and external dissipative forces

are assumed to be acting.

The investigation was conducted in two phases. In phase 1 the
equations of motion were derived for a uniform beam. In phase 2 the
equations of motion were derived for a discontinuous beam which existed

as two uniform sections connected by a rigid bulkhead.

In phase 1 the primary objective was to determine the effects of

damping and initial conditions upon the dynamic stability of a uniform



beam under the imposed boundary conditions. This objective was accomp~

lished with the following considerations:

1. The influence of longitudinal vibrations was considered
in deriving the equation of motion.

2. The transient as well as the steady state solution for
longitudinal motion of the beam elements was considered.

3. Transverse and longitudinal damping terms were taken into the
equation of motion.

4. The partial differential equation of motion was reduced to a
system of ordinary differential equations by Galerkin's method.

5. System stability was established.

In phase 2 the primary objectives were twofold; (1) establish a
method by which a stepped beam could be analyzed by extending or modifying
methods utilized in the uniform beam analysis, and (2) determine the
effect of the stepped beam geometry upon the dynamic stability. These
objectives were accomplished for the same considerations as those taken
in the uniform beam analysis with two exceptions. Initial conditions
imposed on the longitudinal displacements were not considered and

longitudinal damping was not considered.

Restrictions and assumptions imposed to maintain linearity, simplify

analysis, and render a solution were as follows:

1. Motion was restricted to one plane.
2. Shear and rotary inertia effects were neglected.

3. Simple beam theory was assumed applicable.



4. Viscous damping was assumed for lateral or transverse vibration.
5. Structural damping was assumed for longitudinal vibration in
the uniform beam analysis.

6. Beam rotation and deformations were restricted to small values.

In brief, a fourth order partial differential equation was derived
which governs the transverse mode of vibration. Application of Galerkin's
method (ref. 2) reduced the resulting partial differential equation to an
infinite set of time dependent second order differential equatiomns which

were found to be amenable to the method of solution set forth by T. Beal

(ref. 3).



CHAPTER 2

PREVIOUS WORK

Development of fundamentals in the theory of dynamic stability

was probably initiated in the early nineteen twenties, However, the

subject had more academic interest than widespread practical application,

The era of the high-speed aircraft with its minimum weight structure
and its affinity for vibration problems sparked renewed interest in
the phenomenon of dynamic instability. Therefore it was not until the

early nineteen fifties that any extensive treatment was forthcoming.

A recent textbook by V. Bolotin (ref. 1) translated from the
Russian bf V. Weingarten and others, has compiled and utilized the
more significant works in the field of dynamic stability through the
nineteen fifties and early sixties. Bolotin approached the subject
in a classical sense by developing the theory for elementary problems
and then extending the theory to more complex elastic systems. A

number of practical applications were included for a variety of

structure types,

N Significant contributions in the field were made by T. Beal (ref. 3)-
in the analysis of a free-free beam accelerated by a gimbaled per-
iodically-varyiné end thrust. The problem itself had very immediate
practical application to modern rockets but the most important con-

tribution was the utilization and modification of existing mathematical

techniques,




CHAPTER 3

PROBLEM REVIEW

3.1 General

The critical load of any elastic system can be obtained by deter-
mining the smallest load at which a disturbance causes a significant
departure from the equilibrium position. This criterion is known as
the dynamic stability criterion. If the system is also subjected to
a periodic loading, and if the amplitude of the load is less than the
critical load defined above, the response of the system generally remains
bounded. It can be shownm, however, that a system becomes unstable for
certain relatiénships between the disturbing frequency and the natural

frequencies of a system.

Consider the system described in the introduction, which essentially
describes a straight rod compressed by an axial pulsating thrust,
T, + Ty cosQt. The thrust values T, and T; are associated with the
constantly applied thrust and the amplitude of the periodically-varying
thrust, respectively.

If damping is neglected, both lateral and longitudinal vibrations

are excited by the pulsating thrust component. Ordinary resonance defines

instability for forcing frequencies in the vicinity of an natural frequency

of longitﬁdinal vibration and is characterized by a rapid unbounded increase

in amplitudes of longitudinal vibrations with time. Parametric resonance

is characterized by a rapid unbounded response in transverse vibrationms.




Contrary to 'ordinary resonance" these instabilities may exist in the

vicinity of any of the forcing frequencies listed as follows;

2w, ,

Type 1 Q = —1%9- (3.1.1)
w,, 4w

Type II g =0 ) ;4 (3.1.2)

k= 1,2’.“

i,j an integer

where Q is the excitation frequency and Wen) is the natural frequency
of the nth mode of lateral vibration. For purposes of identification and
to be consistent with previous investigations, instability associated
with Eq. (3.1.1) will be a Type I, kth order instability and instability

associated with Eq. (3.1.2) will be a Type II, kth order instability.

The equation of motion for a beam compressed by a pulsating long-
itudinal force is a fourth order partial differential equation. Under
certain boundary conditions such as simple supported ends, the fartial
differential equation can be reduced to a single second order differential
in time with periodic coefficients. This is essentially some form
of the Mathieu-Hill equation and permits usage of tabulated results

(ref. 4). 1In general, this is not the case and methods of reduction and

subsequent solutions must be sought.

An approximate method using the Galerkin procedure (ref. 2) has been
used effectively in reducing the general partial differential equation
to a set of dependent linear second order differential equations as

given by the following typical matrix equation:



(@) + [F1(q) + Ye(t) [Gl(q) = O (3.1.3)

Regardless of the method of reduction used in beam analysis, some
form of the equation represented by Eq. (3.1.3) is obtained. The
complexity of the solution is dependent on the form of the F and G
matrices. For example, if F and G have real distinct eigenvalues and
FG = GF, then ¥ and G may be diagonalized simultaneously by the
same modal matrix A containing the eigenvectors common to both matrices.

Premultiplying the postmultiplying Eq. (3.1.1) by A—l

uncouples the system and yields a set of independent Mathieu or Mathieu-

Hill equations which may be solved by classical methods outlined in Ref-

erences 1 , 4 , and S5 .

Previous studies have been oriented toward seeking regions of
instability rather than toward a complete solution. Regions of
instability are very easily obtained if the system of equations
represented by Eq. (3.1.3) has a transformation which will uncouple

the equation. Such a transformation was described in the preceding

‘

paragraph. For more general and complicated systems, Bolotin (ref. 1) has

formulated exact and approximate methods for finding boundaries se=-

[

parating stable and unstable regioms.

3.2 Damping

The problem of damping is generally neglected with excellent
justification since many problems in vibratioms consist of finding

natural frequencies in order to determine the spectrum of resonance

and A, respectively,



and determining steady-state amplitudes at frequencies far removed
from any resonance frequency. In these two cases, damping has

little or no effect on the results.

Damping becomes a significant factor in determining regions of
instability for parametrically excited systems. With the inclusion
of damping whéle regions of instability may be eliminated completely
and the more severe regions may be significantly narrowed for relatively
small factors. It can also be shown that response to parametric loadings
may not be sustained within the regions of stability when arbitrarily
small damping terms are taken but will decay exponentially-at a rate
dependent on the damping factor. This report considers viscous damping
of lateral vibrations and structural damping of the longitudinal motiomn
in the analytical formulation with the justification of mathematical

compatibility and very limited experimental verificatiom.

The assumption of viscous damping does not define all of the

dissipative forces acting on or within a structural member. Structural

damping is generally accepted as a function of relative displacement,
whereas viscous &amping is proéortional to the velocity. The problem
of accurately describing damping effects analytically is complex and
can only be resolved by extensive experimenfal investigation. At
best, damping factors may be determined experimentally for a specified.
structure to "fit" experimental curves. Experimental investigations
may indicate a range of damping factors from which a factor can be

chosen which will define the damping influence for certain structural



types. Damping factors representing lower bounds attainable by a

system may be chosen to construct an envelope curve.

3.3 Initial Condition Considerations

Initial conditions of this investigation are those conditions
imposed on the displacement and velocity of the longitudinal elements
at t = 0. They form the bo;ndary conditions for the transient
portion of the general solution for longitudinal motion of an axially

forced beam.

‘In classical forcéd vibration problems, instability is generally
associated with resonahce, that is, when the forcing frequency is
in the vicinity of a natural‘frequency. It is conceivable that the
natural longitudinal frequency could be a subharmonic of the forcing
frequency and not be uﬂstable in the usual sense of resonance. It
was assumed in this invéstigation that a maximum influence would be
exerted on the transverse motion at a forcing to longitudinal frequency
r;tio of 1l:n, where n is an integer greater than 1. Only when such
a condition existed was a solution possible. More general conditions

were unsolvable by the method presented herein.
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CHAPTER 4

ANALYTICAL DEVELOPMENT -~ UNIFORM BEAM

4,1 Equations of Motion

The coordinate system of the beam under analysis, shown in
Fig. 2, relates particle or element displacement to a Lagrangian
coordinate system. In its initial state, the x coordinate lo;ates
particle position while the y coordinate, a function of x & t,
measures particle lateral motion relative to a fixed reference
line. Particle displacement u(x,t) measures particle motion

parallel to the fixed reference line.

An element of the beam is shown in Fig.2(b) in equilibrium at
some arbitrary position and time with respect to external and

effective forces. The effective forces acting are the longitudinal

2 2
inertial force m-é—%, the lateral inertial force m-é—%, and the
IxX ox

dissipative damping force C %%. This condition of equilibrium is

stated as D'Alembert's principle.

The equations of equilibrium are obtained by the summation of

forces and moments as

JP 3%u
=—-+ = 0 . 4¢l¢l
VF =_3_2+ 32 +C..al+ =0 4.,1.2
Ly ox m ot ot P ( )



Gl IR GNB BN G IR S A G G N am Ee

TM=Y,4pdy

- Suy
x x-S =0 (4.1.3)

and the element rotation angle with respect to the horizontal

reference line is readily obtained as

)4
¥ = tan 1 9% (4.1.4)
{1+ %;-l)

If rotational stability is maintained by a simple feedback

system, the gimbal angle can be expressed as

6 = Ky Vg (4.1.5)

where Ke is the constant of proportionality between the gimbal

angle, 6, and the attitude sénsor rotation angle, wG. wc is the

angie of rotation at x = G in Eq. (4.1.4).

In simple beam theory, the moment at any cross section may

be written as
i

) |
M= EI &Y (4.1.6)

axl’

and the compressive force normal to the beam cross section may be

written as

P = - AE %,lf (4.1.7)

3

If the strain term,«sﬁ, and the slope 213 are considered small

* 9x

in comparison to unity, as assumed in deriving Eqs. (4.1.6) and (4.1.7),

Eq. (4.1.3) can be reduced to

v
b

11
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f —_— =

T

I I '

M Y _y =
=+ P-§§ V=0 (4.1.3a)

The shear term, V, can be eliminated between Eqs. (4.1.2) and

(4.1.3a)

Yy 2
E1 2T+ p ) 48y Lo a0 (4.1.8)
skt X o ax 3t 2 3t

where P(x,t) is to be derived.
The equation of motion for undamped longitudinal motion is,

S%u _m_ 3% (4.1.9)

the familiar wave equation which is obtained by direct substitution

of Eq. (4.1.7) into Eq. (4.1.1).

The longitudinal displacement function u is dependent upon the
axial component of the thrust. Therefore, if the gimbal angle is

restricted to small angles, the boundary conditions existing are at

. T T
X = L Su__o__1 cosfit (4.1.10)
9x AE AE
and at
x = 0; u_yo (4.1.11)
9x
12
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where a

4.2 Solution to the Wave Equation for Longitudinal Vibrations

4.2.1 Steady State Solution with Zero Damping

The steady.state golution of Eq. (4.1.9) can be found in two

parts as the displacement resulting from the time varying thrust

.

Tlcosﬂt and the displacement resulting from the constant thrust To

up = ug +.u2 (4.2.1)

Let a solution of uy be a product of X and T which are func-

tions of x and t,respectively,

Substitution of Eq. (4.2.2) into Eq. (4.1.9) yields

2 2 ,2
;_g_g = 2—-9-2 = Constant (4.2.3)
X gx2 T g2
2 . m

=D Let the constant term in Eq. (4.2.3) equal -v2 to
AE

achieve a periodic solution. Solutions of Eq. (4.2.3) may be written

as

™
It

C1 cos vx + C2 sin vx (4.2,4)

- \Y% \V]
T = C3 cos-; t + CA sin-a t (4.2.5)

Therefore, by Eq. (4.1.12)

13
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= : v
uy = (Cl cos Vx + C2 sin vx)(C3 cos~z t
+ C4 sin X-t) (4.2.6)
o
gzl = (--vC1 sin vx + vC, cos vx)(C3 cos-ﬁ t
v
+ C4 sin -& t) (4.2.7)

Boundary conditions applicable to a periodic solution are at

g i 1 sn (4.2.8)
X = s ax - - AE cosit A s ke
and at
Jul .
x = 0; —_— =0 (4.2.9)
X

Using Eq. (4.2.7) and the boﬁndary conditions of Eqs. (4.2.8) and

(4.2.9)
C2 =0
C4 =0
v = af
T{ 1 cosafx
Cy 3 — — =212 Qt
1 AE af sinaQl cos
u; can then be written as
u, = -ﬂ—l— Losaix cosaflt (4.2.10)
1~ AE a2 ginofll e
i © 14
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A solution of u, can be taken as
u, = X+ T (4.2.11)
subject to the boundary conditions that at
T rd - -~
x = 2 __=--A-E9 {(4.2.12)
and at

x = 0; —=

[}
o

(4.2.13)

The displacement u, can be obtained by substitution of Eq. (4.2.11)
into Eq. (4.2.9), which separates variables, then straight integra-

tion. Applying the boundary conditions of Eqs. (4.2.12) and

(4.2.13) yields | 4 RS
T x2 T t2
= - o -~ -——_O . -
u, JARL AR + constant (4.2 ;4)

The particular solution of Eq. (4.1.8) can now be written as

up = ul + u2 + constant

2 2
T x Tt T
w -2 T Tl cosqu
P 2AER 2AEa2f  AE af sinafR

cosaflt (4.2.15)

+ constant

4.2.2 _Transient Solution

To obtain a general solution, a term u, must be added to the
particular solution up such that the sum will satisfy arbitrary

initial conditions.

15
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Choose u, of the form

Up = XT (4.2.16)
subject to the boundary conditions
uo(x,O) = £(x) - u_(x%,0) (4.2.17)

f(x) = Initial displacement

auo )
—_— = - %Y
v (x,0) g(x) S (x,0) (4.2.18)

[
g8(x) = Initial velocity

auo .
- (0,t) =0 (4.2.19)
ox )
i
auo
— (&,t) =0 (4.2.20)
) 4
Substitution of Eq. (4.2.16) into the wave equation yields
X2 o 2 (4.2.21)
X T
u, = (Cl c&s kx + Cy sin kx)(C3 cos-% t
+C, sin X ¢) (4.2,22) ~
4 o o e
lauo K
3;- = (-Clk sin kx + Cyk cos kx)(C3 cos E't
+C, sin K ¢) (4.2.23)
o

16



From Eq. (4.2.19), Eq. (4.2.20), and Eq. (4.2.23)

C, =0
= nn
k'z

ol )

n=1

au0 v nr nnt nnt nnx

— = a2 [— i ———— — — 4.2.25
T nglaz [-A, sin o7 + By cos o0 ] cos T ( )

Solutions for the constants A, and B, may be obtained from

9
Eqs. (4.2.17) and (4.2.18), respectively. A, does not effect 359

f(x) - up(x,O) = A, + nzl An cos--@-g-E (4.2.26)

Multiplying by cos BX and integrating over the length yields
g oy )

A, =-% jl[f(x) - up(x,O)] cos 5%5 dx (4.2.27)

o]

In a similar manner,

L ou.
= 20 J ‘ %% 0 nwx 2.2
B, = [g(x) =t (x,0)] cos = dx (4. 8)

0

The general solution of Eq. (4.1.9) can now be written as

17

[A, cos E%E + B_ sin DIt} cos BTX  (4.2.24)
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Tx2 Tt2 T
= . .0 _ _‘o 4+ -1 1 cosgmx cosqt
P (J 2AER  2AEq2% AE of sinaff

(-2
+ A, + —— + B, an anrx
o nél [An cos —o t sin or t] cos )

(4.2.29)

where A, and B, are defined by Eqs. (4.2.27) and (4.2.28). The

normal force P in Eq. (4.1.7) due to the longitudinal vibration

is
= - 3u
P = AE 3%’
then ,
ToX . sinafx
P=— 9+ Tl————coth
sinafll
ar |, ar
+ AE nzl 7 A cos B2t + B sinBF £]  (4.2.30)
. nTX
* sin
or L
P = Po + P1,+ Pc (4.2.30a)
Tox
po = _Ef' | (4.2.31)
P, = Sinafix cosfit 4,2.32
1 1 sinaQe ( )
P = AE [ cosi’l:+3 sin BL t] - (4.2.33)
c ngl L An al al
. nmx
sin XX =

4.2.3 Steady State Solution with Longitudinal Damping

In Eq. (4.2.1), u; was taken as the displacement resulting

from a time varying thrust T;cosQt. If structural damping is

18
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assumed for longitudinal vibrations, the equation of motion,

Eq. (4.1.8), will be modified to (ref. 6)

25 2y -
L - _ 837w
G_Z_ .aT.Z._. j’_gmLul atz 0 (4.2. 34)
where
i= v-1
2 . m_
* = aE
g = Structural damping factor of longitudinal vibrations
) ﬂ n [AE° -
s —= - _— . Ty 4
W 2 IVam From Eq. (4.2.24)

1 1

Fundamental natural frequency of longitudinal vibrationms.

The real portion of Gl in Eq.'(4.2.34) will represent the desired

motion of the damped solution.

As in Section 4.2, a solution is obtained by a separation of
variables technique. Let Gl be a product of X and T which are

functions of x and t, respectively.

Gl=xr

Substitution into Eq. (4.2.34) yields

2
L dX - jgu2xr- x4T -
a® dx L dt

2 2 42
1 4d°X 2.2 a< 4T 2
< =5 - igwfa’ = o —= = -v (4.2,.35)
X dx< ng T dt2

19
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The boundary conditions imposed for a particular solution are at

= - —— cosit
AE

9xX
and at
du
x =0 =1 =0
P).9
It follows that
d’1 | v2
— + X T=0 (4.2.36)
dt a?

where in order to satisfy the boundary conditions at x = % the

following relationships must exist:

2
-Y_. = Qz
al

V2 = 920‘2

It then follows that

2
d<X 2.2 . Ty 2 = .
L2+ [%a ig (—2) JX=0 (4.2.37)

and
X =C; cos [2242 - ig (%)2]%1(
+ C, sin [Q2a2 - ig (%)2]%x (4.2.38)

Applying the boundary conditions and solving for the constants yields

an expression for Gl of which the real portion will represent the

20




desired motion. The desired solution for the force distribution

is obtained from

Pa—AEﬂ“.
ox
as
N sin[Q242 - ig (%Qzl%x
P1 = T cosft (4.2.39)

1 sing2a? - ig c%)z]%z

If in Eq. (4.2.39) the damping coefficient equals zero,
Eq. (4.2.39) is equivalent to P, in Eq. (4.2.32). Therefore,

i

the complex expression for the force distribution with damping

A

is

* Tk
P*-p 45t (4.2.40)

where Pc’ the force resulting from satisfying initial conditioms,

is assumed to damp out.with time.

4.3 Lateral Force on the Beam due to Gimbaling

y

A vectoral sketch pof the applied thrust acting on the beam at

X = £ is given below:

Fa)

T° + T1 cost

- - Beam Axis

21




For small gimbal angles, sin® = 6, and the normal side load

“acting at x = L can be written as

p = (T, + T, cosQt) s (x-1) (4.3.1)

where 8(x-2) is a dirac delta. The thrust gimbal angle was ex-
pressed as a direct function of the beam rotation sensor in

Eq. (4.1.5) as 6 = Ke Vgs where

ay(
==(x t)
= tanl 22 G °

L]

G (4.3.2)

Ju
1 +=
( 9xX

If the strain term %% is assumed to be much smaller than unity,

and if the rotation term-%% is restricted to small values, then
8 =K, & (x.¢)
Ky v (xG’t) (4.3.3)
: £
is a good approximation.

The normal side load p is

= ’ 9 -
p = (To + Tl coth)Ke 3% (xG’t)G(x L) (4.3.4)

4.4 Introduction of Diﬁensiodless Variables into the Equations
of Motion

The governing equations of motion derived previously are

listed below in the dimensional form in which they were derived,

i

22




(1) The governing equation of motion for beam vibration.

t 3 3 32 3y =
EI;%+-5[PS§]+m-a:§+cat+p 0 (4.4.1)

(2) The undamped force distribution.
- T X .

P =0 4 7 SinaQx Qt

1 sinane °°°

+ AE BT [A cos DT ¢ 4+ 3 in BT t]gin BIX
z 2 [ L €O I a Sin pr: Isi

n=1 L
(4.4.2)
(3) The damped force distribution.
R e T
(4) The lateral force p.
P = (Ty + Ty cosfit)k, 2 (x06(x-1) (4.4.4)

Dimensionless variables may be introduced by the follbwing
steps.

Step (1)

The following substitutions afe mades

X = ER, ) & ='f | (4.4.5)
T .
t = —, v p T o= gt (4.4.6)
w i
1 :
i 23
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The fundamental frequency of a free-free beam given ag w, was

chosen as the time normalization constant with the same physical
characteristics as the beam under analysis. As shown the £ term

has an obvious definition.

Step-(2) -

: i
Multiply the equation of motion by<§f, factor out To in the P

expressions, and factor out-—% in the p expression.
L

Step (3)

B
As a means of groupintherms and rendering a more compact equation,
the following substitutions are made into the equations resulting

from Steps (1) and (2) above.

- Q
Q =8 - (404.7)
“y
7= ) (4.4.8)
LDL )
The fundamental longitudinal frequencyAwas found to be
= v = l"&E-
"Ly ‘(4.4.9)'
where a is replaced by its original value of
2 _m
Qa B = (404.10)
AE
- w
w =L | (4.4.11)
L wl

24
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_ T 42
T - o | (4.4.12)
Tl :
v o1 (4.4.13)
T, ’
no=—< (4.4.14)
- mwl
4
Ar“x = 2 M7 (4.4.15)
EI
oCE) = simrgﬁ (4.4.16)
sinno
(2102
Q*(E) = Ssinm(o‘-ig) 't (4.4.17)

sinw (62-ig)

Performing the indicated steps yields the following equations.

2 T ) b 82 y 3
3Y + 03 (pee) 8Yy 4 A% 3y . a4 3y
ag * T, 9¢ [P(5) 35] 1 312 1 31

Y

P(E) = T_[E+ YO(E) coshr

+~%§,,Z %l.(AncosBLt + aninaLr)sinnWE]
0 n=1 .
) (4.4,19)
P*(E) = T L&+ YO*(E) coslir] (4.4.,20)
= —Tﬂ (1 + Ycosfit)K Ay (E.,1)6(E~1) (4.4,21)
P CT e o

25
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which when combined yields the final equation.
L -
2y 2 A
py + To T3 [(E€ + Y®(E)cosnlit) 3

2 nw w 2. ) sinnnE)
+'3§, E—(Aﬁcosnth + B sinnu 1)sinnng]

o—l'g
Ht~28

o n=l

2
+ A3 4 e 3y
1527 ™ T

T .EX - =
+ To(; + YcosDt)Ke 51 (EG,t)é(g 1) =0 (4.4.22)

4.5 Reduction of Equation (4.4.22) to a System of Ordina

enti Equations by Galerkin's Method (ref. 2)
)

Galerkin's method is normally applied as an approximate method
for obtaining a solution to a differential equation under, given
boundary conditions by taking:a function which satisfies the boundary
conditions exactly then solving for function modifiers which will
render a good approximation. The method is of the same general

class as those of Rayleigh and Ritz.

The method of Galerkin will be used in this analysis to reduce
the partial differentiai equaﬁjon of Eq. (4.4.22) into a set of
ordinary differential equations. This process is essentially a
separation of time and spatial coordinates wheré\the spatiél coord-

inates are defined by the assumed displacement function and the function

modifiers are time variables defined by a set of ordinary differential

equations,

26
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A description of the Galerkin method indicates that the solution

of Eq. (4.4.22) can be adequately approximated by expressing the

deflection

yN(E’T) = qA + QBE + i,

o8

9, (1) ¢,(E) (4.5.1)

1
as a sum of some translaticn term qA(t), a rotation term qB(T),
and a function ¢,(€) as the nth vibration mode shape of a free-

free beam that satisfies the boundary conditions. qn(T) is the

generalized coordinate associated with ¢ (8.

Ref. 7 tabulates the characteristic functions and char-
1
acteristic values for a number of beam configuration including a
free-free beam, and include formulas for integrals containing char-

acteristic functions of a vibrating beam.
A

f

The approximating function ¢n(£) chosen is a normalized eigen-
function for a uniform beam governed by the well-known differential

equation

EIZL +pnZ¥L=0 (4.5.2)
ax" ot“

and has the mathematical”prope;ties

dh¢n = AH
1 .
[ ta tnde =5, =0, msn (4.5.4)
° ! =l, m=n
27
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where An was previously used in Eq. (4.4.15) as a normalization

constant.

14
X: = mﬁ o
EI
wﬁ = natural frequency

The An values are tabulated in ref. 7 as characteristic values

of the characteristic functions L

Equation (4.5.4) satisfies the so-called orthogonality relation-
ships within the range of integration and establishes the normalization

constant by which ¢, is determined and tabulated in ref. 7 .

The chosen function yy containing a rigid body and a beam dis-
placement function satisfies the dynamic boundary conditions of

i »
zero shear and zero moment at the free ends of the beam. That is,

at
2 2
2 d<¢ dyN
g = O’ _a_l = n = dgz =0
a€2 d£2
3 3
Y _ o _ N =0 (4.5.5)
cagd v oded agd
'and at N
I k ? 2
d'¢ d‘y
2
' 352 dEZ dgz
' 3 3
33 d’¢ d y
X LU, N_o (4.5.6)

g3 de3 de3

Galerkin's method requires that the error inherent in the

approximate solution given by Eq. (4.5.1) bebbrthogonal to the

e 3 oy
weighting function —~, 1In equation form,
a4
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i 5(yy) T ¢ = 0 L= Q500 (4.5.7)
or
j 6y, )dE = O (4.5.7a)
[¢]
[ etyprede = 0 (4.5.75)
(o)
[ sy eq0ra n=1,2,3,... (4.5.7c)

o]

where §(yy) is the errpr resulting when Eq. (4.5.1) is substituted

into Eq. (4.4.22). The theofy behind this process is explained
in ref. 2 .

As an aid to integration of the preceding equations a few

important formulas are presented below.

1 N
d
[ odg =2 f *a 4 - 0 (4.5.8)
0 n 4
1 1 43
d’e
[eopae=-L [ Zhage (4.5.9)
n Al dgi
/ o 0y
f %— (¢ ——N]dc P(l) () (4.5.10)
C : .

) ,
f 4 p Mg = P(l) (1) - j P— g (4.5.11)
5 dg dé

- 29
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1 dy d
d N yn
¢, — [P —]dE = ¢ (1) P(1 1

' Pd
j o yN (4.5.12)

1

[ s(e-1de = 1 By definicion (4.5.13)
- o .

The formulas were obtained by applying the boundary equations for

the shear, moment,and force distribution.

In the succeeding derivations, the substitution

-

Cncos(nwLT + wn) =

AE“" [A cos nw;t + B 51n nth] " (4.5.14)
T L

has been made, where

T £
A, = = C,sin Yy (4.5.14a)
AEnmn 1 .
T.% f "
B. =2 _C cos v (4.5.14b)
N AEny D n

s (4.5.14¢)

Egqs. (4.5.7a, 4.5.7b, and 4.5.7c¢) are integrated with the aid

of Eqs. (4,5.8) through (4.5.13) to obtain

30
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TR N9 _l L
AL Gat MOt M9 YT g

+ To 1+ Ycosﬁt){qB + . qn¢;(l)]

. _ N .
+ TO (1 + Yeosht) [qB + z qn¢n(1)}
. n=1
1
[ eac
0

uak;ﬁ

qg - T Yeosfit

-

It~

- T Iy,
o (1 + YcosQrt) qn¢n(l)
: - n=1
I
+ T, Yeosr ] q_ | 6,0 de
n=1 o)

_ N
+ T (1+ YcosQT)K, [qB + ) qn¢;(EG)]
n=1

- T C
+T q § = [(-1)S -1 u
o Iz & o [(-1) ] cos (sw T+ ¥.)
N !
C+ T ) q, Y ms Cg j ¢, (&) gos (smg)dg
n=1 s=1 ) ’

* cos (sth’+ ws) =0

31
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L]
[¥3]
L]
-4
w

Ly

(4.5.16)




TR
|

-l -E W

+

A; q + nAj &k + 2 G

N

+ To (1 + YcosQt) [qB + X qn¢;(l)} ¢, (1)
n=1

¢ 1
- '1'0 ¢k(1) qB - TOYcosQr {ék(l) - £

¢k¢'da} %

1

- 1] A} - -
-7 q, ] £0, #dE = T_Ycosit
o]

(o]

o~
[ 3=}

I1¢¢' ¢'d5
q n K
n=1 n 0

n=1

- N ]
+ To (1 + Ycosnt)Ke [qB + Zl qn¢n(€G)} ¢, (1)

© 1

- Tyag ) Cgcos (s T+ y) j ¢, sin (sm£)dE
s=1 o
X w _ 1,
- T, 21 qn 21 Cg cos (SwL + ws) J ¢, ¢ sin (smE)dE=0
n= sS= .

o]
kK =1,2,... N  (4.5.17)

Eq. (4.4.22) has now been reduced to a set of ordinary linear
differential equations as given by Eqs. (4.5.15), (4.5.16), and
(4.5.17), 'The coordinate q, can be eliminated between Eqs. (4.5.15)
and (4.5.16) without losing any important modes since translation is

uncontrolled. The resultant set of equations may be represented in

matrix form as
(49) + (qQ) + [F] (@) + vcoshr [G] ()

+ 1 [H], cos (swyt + ) (@) = (0) (4.5.18)
s=1
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where

qB} B=N+1

and [F], [G], and [H] are matrices of order N + 1, The elements of

these matrices are defined as follows:

- 1
T ' v s
Fie = Oy/a)" sy EROICENEE [ €0y oy at
0

+ Koy (1) 460 ] j=1,2,...N (4.5.19)

=
[l

1,2,...N

To L
Pyl = I Kgo4(1) 3= 1,208 (4.5,20)

To 1 1 '
FN+l,k = 12 -)-\-i ‘:5 ¢ (1) - ¢ (1) +3 Ke¢k(gc)] (4.5.21)

k =1,2,...N

6TOK9
FN+1,N+1 = T (4.5.22)
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= 1
=_° _ ' ' '
G = 5% [«bj(l) # (1) f 96, o dE + K9¢j<1)¢k(ac)]

(o]

j=1,2,...N (4.5.23)
k = 1’2,0.0N ‘ ‘
= 1
G =.-2 I¢¢'dE+K (11
i 18 12 ™ i A )J (4.5.24)
"1 ke T =
j = l)zgot'N

1
ON+1,k = 121 = [7 o (1) = 6, (1) + j <b'd§

1 c
+—- K ¢k(€ )} k=1,2,...N - (4.5.25)
To | 1 ' 1
GN+1,N+1 =12 —E l: "2" - J ®d¢ + -5 Ke] (4.5.26)
M )
- 1
. T, ']
H;k = - -;;:-.- CS j b1 ¢j sin (smg)dEg (_4.5.27)

0

j =1,2,...N

k =1,2,...N
s =1,2,...
. T e
HJ MLT T o s‘J ¢4 sin (smE)dg (4.5.28)
}‘l ° v
j=1,2,...N
s =1,2,...%
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E 1

i = it J ' .
MNel,k” 1270 G | & sin (smE)de (4.5.29)
10 |
k = l,z,oooN
8 = lpz’o..
Hy - 1222 pepe -y L (4.5.30)
N+1,N+1 v — | .5.
8 =1,2,...

The undefined integrals given in the equations above are reduced

to a form compatible with Fortran IV computer language as follows:

Ref. 7 gave the formula for ¢, With tables as

- + - . - Py
¢n cosh XnE cos Ang un(s1nh Ang sin Anﬁ)

(4.5.31)
Then
4% _ ' . inh A i h ; A_&)]
EE— =0, = Xn[51n nE - sin Ani - an(cos Ang - cos nE
(4.5.32)
which can be expressed in exponential form as
A A -An € iA A
¢; =- [e n _ e 7 4 1ot n® _ ie n®
2
ALE Apé ir,€ irn€
- n_ _ n> _ n
a e a e a e e ] (4.5.33)
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Eq. (4.5.33) can be expressed as

] An 3 -l :
- =2 T 3 4 (1) "Apt
¢n 2 Lo [(1)" + an] e | n o (4.5.34)
1= /-1

which is adaptable to programming.

The most difficult integral to evaluate appears in Eq. (4.5.23)
as

1

J 205 ddE (4.5.35)
o]

Substitution of Egs. (4.4.16) and (4.5.35) for ¢ and ¢;,respectively,

yields

) Az 3 3 - 1 \ R $ymIA
Tl 1] I @+ o [ sianeg[ D1+ Pt
4 sin 2=0 m=o J .

o]

(4.5.36)

which is easily integratable in its complex form from any table of
integrals. The real part of the result is the desired integral value.

A check of accuracy can be made by comparing the imaginary part

to zero.

The remaining integrals are obtained by employing Eq. (4.5.34)

in a similar manner.
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In the absence of a complex computer routine, the integral

formulas of (ref., 7) can be employed. However, for the particular

integral of Eq. (4.5.36), a recurrence formula given for integrals

of that type proved laborious to employ;

The matrix elements of Eqs. (4.5.19) through (4.5.30) are

equally valid for longitudinally damped conditions by making the

following substitutions,
o* for ¢, ' See Eq. (4.4.17)
H§k =0 for all j and k
and retaining only the real parts.

4,6 Initial Conditions

The condition of zero displacement and zero velocity along the
longitudinal axis is assumed to exist prior to application of the
loading. For such a case, f(x) = 0 and g(x) = 0 in Egqs. (4.2.17)

and (4.2,18), respectively.
The unknown constant An can be determined from

2
A, =-% ; [0 - up(x,O)]cos-E%5 dx (4.6,1)
o

where f(x) = 0 has been subsituted into Eq. (4.2.27). A solution to

up(x,O) is obtained by solving Eq. (4.2.15) at t = 0 to obtain
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T %2 T
v, (x,0) = - 295 4 11 cosagx (4.6.2)
P 2AE%X  AE aQ sinaQf

Integration of Eq. (6.1,1) yields

An=-T££{2t295 1—+—1—J) (4.6.3)

AE L“z 52-n2

In like fashion, B can be determined from Eq. (4.2.28) with

g(x) = 0 as

. .
=2 - du nnx
B, - I [0 5t P (x,0)] cos 7 dx (4.6.4)
o

d
Therefore, since~3§2 (x,0) =0,

n (4'6¢5)
The constant C, 1s evaluated from Eq. (4.5.14) as
= AEnm ’
Cn = T—E— (An)
[0}
c, =2n(-1 1 . v (4.6.6)
n n n? o2 2
-1l

Since Bn = 0, the phase angle, wn, of Eq.

by Eq. (4.5.14b).
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CHAPTER 5

ANALYTICAL DEVELOPMENT - STEPPED BEAM

5.1 Equation of Motion of a Stepped Beam

The coordinate system ¢f the stepped beam, shown in Figure No. 2.3/,

relates particle or elemens displacement i a lagrangian cocordiret

m

system. In its initisl state, the x coordinate leoczates particle positic

- m - -l

while the y ccordinate, a fumcticn of x and t, measuves particle
position normal to a fixed reference line., Particle displacement
parallel to the fixed reference line is given by u(x.t). The ccordinate
system and loading configuration is identical %o that chesen in the

uniform beam analysis of Section &,

In Fig. No. 1(b) the beam ccordinate constants are defined for coatinuous

sections. Only cne discontinuity will be considered ir the analysis.
Beam parameters will be desigrated by subscripts 1 or 2 ¢ indicate the
beam section to which the pzrameter applies. The discontinuify in mass,
area, and stiffness are reflected in equation form as

m(x) =m, + (m, - m,) h(x-c) (5.1.1;

1 2 1
A(x) = A, + (A2 - Al) hix-c) (5,1.2)

1

EI(x) = EI. + E(I_, - Il) h(x-c)

N

L1
<
i-..-‘:
°
w
.7
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The term, h(x-c), is a unit step function with the following definition:

h(x-c) = 1; ' X >c

= 0, : X < ¢

The analysis assumes that both sections have identical material pro-
perties, therefore, Eq. (5.1.1) can be written in terms of the cross-

sectional area as

m (x)

]

cA(x)

p[Al + (A; - Al) h(x—c)]{, (5.1.4)

The equilibrium equations derived for a uniform beam from Fig. 4-1
are valid for the stepped beam in this analysis, if the mass, area, and
stiffness terms are considered functions of x. The element rotation angle,
¥, given by Eq. (4.1.4) is applicable in both cases. The resultant
equations of motion can be derived as was done in the uniform beam
analysis to yield the following equation forms:

82 r 32 ] ) 32
o 2y 9y oy

+ C(x) _21 +p=0 (5.1.5)
X
3 [EA(x) U] _ HA(x) % _ 0 (5.1.6)
X 5x atz

The force distribution, P(x,t), will be derived through Eq. (5.1.6) from

the relation P = —EA(X)-%E « The lateral force component, p, was derived
X

in the uniform beam analysis and is directly applicable as
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P = (T, + Ty cosx) K, g—i (%5,t) 6(x-2) (5.1.7)

5.2 Steady State Force Distributiomn, P(x,t)

In this analysis only the particular solution of Eq. (5.1.6) for
the applied load, TO + Ty cosQt, will be sought. The force distribution
is functionally related to the displacement by

v Ju

The boundary conditions are at

X = 0; P(ont)

(]
(w]

(5.2.2)

and at

X = 23 P(%,t) = T, + T cosat (5.2.3)

The constant thrust, T,» imparts a constant acceleration to the beam.
The force, P_, at any station, x, due to the constant thrust, T , is
(o] o .

equal to the mass accelerated multiplied by the resultant acceleration,

that is,

TOC .
PO = ﬁ;— Alx + (Az - Al) (x-c) h(x-c)] (5.2.4)

Note that the resultant acceleration due to T is glven by T /MT MT is

the total mass of the beam.

The force distribution due to the periodically varying thrust com-

ponent, T, cosfit, can be derived from Eq. (5.1.8) by applying Eq. (5.2.1)
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and the boundary conditions. As a first step, assume that the displacement,

u, in Eq. (5.1.6) can be expressed as
u = XT = X cosfit (5.2.5)

where X and T are functions of x and ts; respectively. u = X cosQt since
the steady state solution is required. Substitution of Eq. (5.2.5) into .

Eq. (5.1.6) yields
4 1Eax) ¥ + 2 ca)X = 0 (5-2.6)
dx dx

Let the force distribution due to the periodically-varying thrust be

denoted by Pl‘

Pl - EA(x)-%% = Px cosfit | (5.2.7)

2]
]

- EA(x) 94X (5.2.8)
dx

It is convenient to take the derivative of each term in Eq. (5.2.6) and
to express the results in terms of P,. The indicated transformation is

accomplished as follows:

2 .
4 [Eax) 4% + 02 pA' (%)X + 0% pax) 9X = 0 (5.2.9)
dx2 dx dx

A'(x) = %ﬁ- = (&, - 4)) 3(x-c)
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Eq. (5.2.9) can now be expressed as

2
d°Py

dx2

+ Q2 %‘Px =02 p(A; - A)) X(c) 8(x—c) (5.2.10)

Note that X(c) is the value of X at x = ¢ and is a constant. This result

follows from the identity, X(x) &8(x-c) = X(c) §(x-c), given in »r

3 &N

nf. (7)0

'~

A solution, P,, in Eq. (5.2.10) can be obtained by application of

Laplace transforms. The Laplace transform of each term in Eq. (5.2.10)

= p2%(4) - A)) X(c) &5, (5.2.11)
s = Transform variable

PX(O) =0

Rearrangement of terms in Eq. (5.2.11) with the substitution

Q2 - ,
= &= (w2, (5.2.12)
5=

wr,

=T JE .
w‘L 2 J; (592rl3)

yields
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P, (0) 22p (Ay-A;)X(c)e 5C
P (s) = + . (5.2.14)
s24(v¥) 2 s24(vx)2

The inverse Laplace transform of each term in Eq. (5.2.14) can be taken

to yield
A
P_(0) Q2p
= 1 [, - i * ou —
Px(x) ¥ sinvéx + % (A2 Al) sinv¥*(x-c) h(x-c) (5.2.15)
P .(2) = T, from Eq. (5.2.3)
Therefore,

2 .
P (x) = T, SIAVEX _ B0 (4 g yx(c) SIDVELC) gyh0a
¥

x 1 ginvxe v sinv*

sz

+-;;— (A?-Al)X(c)sinv*(x—c)h(x-c) (5.2.16)

vk =-% a
The unknown constant X(c) can be obtained by solving Eq. (5.1.6) directly
for each continuous section of the discontinsous beam and then matching
boundary conditions existing at the discontinuity. It can be verified

by performing the indicated operations that X(c) can be written as

Tcosv¥c 1
X(e) = (5.2.17)

A
VA E cosv¥c sinvk(L-c) +.Kl sinv*c cosv*(L-c)
2

Substitution of Eq. (s,zoii) into Eq. (5.2.16) yields the final equation
form of P;. Let B, denote the expression within the brackets of Eq.

(5.2.17), then P, can be written as

44



SRR
-

O

. A .
P =T 5%2255 - (1 - —l) B_ cosv*c sinv*(L-c) sinv¥x
X sinv*yg A" © sinv*Q
A
+ (1 - A_;) B, cosvic sinvk(x-c) h(x—c)] (5.2,18)

5.3 Introduction of Dimensionless Variables into the Equatioms of Motion

The governing equation of motion is given below in dimensional form

for ready reference.

32 el VAR y
7 [FI( ﬁ] * 55 [PG8) 571+ oA —%
+ C(x) —Z—i— + p(x,t)= 0 (5.3.1)

Dimensionless variables may be introduced by a change of variables

given by
X c
X = EL; £ = I and EC e 7 (5.3.2)
and
t = T=owt (5.3-3)

The constant w, was taken as the natural frequency of a uniform free-
free beam having a length % with the material and cross-sectional pro-
perties of Section 2 of the stepped beam and is related to the beam

geometry and material propertieé by
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(5:.3.4)

By performing the indicated change of variable and then multiplying
through by £“IE12, Eq. (5.3.1) can be written as
L T

a

32 (1) 3%, 22 3 her Ty,
el b0 SN L B}
YO

Co 2 mo L™ A(E)

mzwl i EIZ Az

2 2y Y .
+ W, T2 + rrae 0 (5.3.5)

It was assumed that C(x) « m(x) which essentially states that

c C
—i =2 constant. C; and C, are the viscous damping coefficients
mp M

of section (1) and (2) respectively. As a result of this proportion-

ality one can write

C(x) = pA(X) °* constant (5-3.6)

The constant term is given by the term szmzm_-l in Eq- (5-.3.5). This

constant is called the transverse damping factor and is given by

C2
n = (5.3.7)
mzwl

The final equation form can be written as

2 I(x) 8%y, L X 5 oy 3yq L &2 .
L o+ —— 57 (6,0 $H + 1= p(6,7)

2
A _é.(g_).a—y-r nA” A(_.gl_a_l =0 (5.3.8)
1 A2 312 ! Az aT
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eI,

where

P(E,1) = PO(E) + PX(E) cosfit

P(8) = T, 222 [ + (1K) (6-6,) h(E-c)]
o M

Mp
¥ oo1-e g
mzl . ¢

P(e)=T sinmgg _ (L-24) 8 coswgg
X 1 e c

sinng

- [sinng(1-¢ ) Sinmot

- sinnE(g—gc)h(g—c)]]

singc
g _ 1
e [cosmof  sinmo(l-€ ) + AsinncE_ cosmo(1-€ )]
C Cc c c
v 0 oy -
p(g,") = Tl(l + YcosQT) Ke EE-(EG,») §(&g-1)
T
Y —'T;
- A
A=-L
Ay
- Q
Q=
&1
8:.9—.:-&-\,*
uJL i
L
LT7 Vo
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(5.3.13)

(5:3,14)

(5.3.15)

(5.3.16)

(5.3.17)

(5.3.18)

(5.3.19)



5.4 Application of Galerkin's Method

There is some question as to the applicability of Galerkin's method
in the reduction of Eq. (5.3.8) to a system of ordinary differential
equations, since the coefficients are not continuous (ref. 1). An

extension of the method to piecewise continuous intervals has not been

substantiated.

Although the accuracy of the result is questionable in the application
of Galerkin's method to Eq. (5.3.8), it is hoped that the results will

be of qualitative value in analyzing the dynamic stability of a dis-

continuous beam,

A discussion of Galerkin's method is presented in Section 4.5 as
applied to a uniform beam. The approximating function employed for the
uniform beam has been taken as the approximating function of the dis-
continuous beam, therefore, Eqs. (4.5:.1) through (4.5.7c) are applicable
to this analysis. Pertinent equations are rewritten below for ready

reference. All derivations, definition of terms, and discussions are

given in Sectiomn 4.5,
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(1) The approximating function, Eq. (4.5.1)

x

yR(ET) =y + qgE + ] q (1) ¢,(E) (5.4.1)

(2) Resultant system of equations, Eq. (4.5.7a) through (4.5.7¢)

1

[ stopae =0 (5.4.2a)
(o]

kl
| sGypede =0 (5-4.2b)
[¢]

1
| sy e @az=o0 n=1,2,3,°" (5.4.2¢)

o

where §(yy) is the error resulting in substituting Eq. (5.3.1) into

Eq. (5.3.8).

Equations (5.4.2a) through (5.4.2c) can be represenfed in matrix

form as

[Al1(q) + n[Al(q) + [B1(q) + [C] cosRt(q) = (0) (5.4.3)

where

{ ] = a square matrix of order N + 2

and
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N1

In+2

IN+1 < 93

Iny2 = 94

The elements of the coefficient matrices are obtained by expanding

Egqs. (5.4.2a), (5.4.2b), and (5.4.2c) then grouping coefficients of

@, (@, (q), and cosfit(q). The expanded equations are lengthy but

the expansion and grouping of terms is routine. The resultant expressions

for the elements of the coefficient matrices are given in integral form

below. It is not necessary to assign equation numbers to each element

since the equations are readily identified by their subscripts.

1

= 5% | AC8)
A x .xl f _Az d>j ¢, d€
o]
1
=4 | AB)
Ay w1 TN f—é;l £dg
(o]
,l
— 14 A
Ay w2 = A J ‘%)' ¢, d&
(o]
1
= 4 A(E)
AN+1,N+2 Ay 2[ AAZ—- £dg
VNG,
ANt1,N+1 = A J’f‘ E2dg
2
C
50
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)

1
=4 | A®)
Anto,N42 = *1J A OC

Matrix A was found to be symmetric therefore it is only necessary to

define elements of A on and above the diagonal.

1
e | S L 0] 0ga

> 42
22 d '
< — [P .d
+EIZ } dE [Oq)k] ¢J£
o]
1
202 v e [ en ste-1a (5.4.4)
2, %o ¢ (Eg) | 05 8(E-1)de b
o]
22 d
B. =_— | & d
191 3 ESCRERE
o]
1
- Tot?
* o K, f 65 8(e-1)de
o4
Bjm2 7O
a2 e
B = f S (L) ') gde
22 Hg_ L
* 5, |3 B el Ede
(6]
012 '

' f
o]
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2
B = 5-_-f i [r d
0
1
N Tol2 sCEm1
o £8(E-1)dE
(o]

By+i,m2 = O

1

2
B I

22

+ 2
EL,

T122
+._l—- K
EIZ

1

22
Cysme1 = 1 j
20

M2,k T T, J @ Bo tilde

1

Ry ¢ (Eg) f § (E-1)dE

1

(5 | ¢ sCe-Dyae

(o]

4
ar [Px] 0ge

1

K | ¢,8Ce-1)de

(o}
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Cj,N+2 =0
i
22 £ d (]
Cnt1k = Fo | 3¢ [, #lede
2,
Ty 22 1

1
Gur,m1 T E, B B(G J £8(e-1)dg
(o]

Cx+1,842 = 0

1
22 fd '
Gw2,k T EL, J ar [Py %ilde
o}

T2 ' !
+ 5K %(Ep | ae-nae
c
2 1
=2 |4
Cnt2, N1 = ET, J ag Tl 96
(o]
Cne2, 42 = O

One must proceed with caution when manipulating or evaluating
integrals containing discontinuous functions. To illustrate, several
of the representative integrals in the matrix elements given above are
taken as examples. The first integral chosen as an example is in

element A, ,. Let
j.k
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1
,
ACE) -
| r» ¢, 6 dE = INTy
o]

then

fo) £
=C

The following integrals are taken from element Bj k>
?

1
s o, dE = INT
2

de2 I 2

)
Integrating by parts yields

1 i

=4 I(E) " 4 1eE) Lty L
INT, ar [12 oy Qj!o [ i [—-—g—-12 o] 6y 4.

The first term is zero since the shear is zero at £ = 0 and £ = 1.

=

Integration of the second term then yields

v | HEL o o ae

= - (L) .

o o

The first term is zero since the moment is zero at £ = 0 and £ = 1. The

resultant integral can be written as
1 s
_ = [ T] - l LI d
INTZ =1 J ¢k ¢J dE + (1‘1) ! ¢k d)J E_
0 3
c
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_ 1
where I = —l c
Iz

Let

.1

ml&
|~

d ' -
5 ¢ (P, ¢,1 ¢4 d& = INT,4
0

Integrating by parts yields

i

INT 22 7 ; : e< J‘ ' ' d
3 EI, 7, Q>k”’j, T, ) Fo %k %3 95 -

By applying the boundary condition that P0 =0 at £ = 0 and P0 = T0

at £ =1, INT3 can be written as

TO‘Q‘Z ' [] EZ " : o e
INT3 = EIZ ¢k(l) ¢j (l) - —-——EIZ ,‘ PO ‘Pk ¢J dg.
(o]

As the final integral type let

i

¢jé(£—l)d£ = INT4

0 Sy

1

N, = [ 6;1) 8e-1)ag = 6, (D)
0
The remaining integrals given in the matrix elements may be transformed
to a standard form in a similar manner. The final integral forms do not
contain derivatives of discontinuous functions, and the dynamic boundary

conditions on shear and moment are satisfied at the beam ends. The re-

sultant integrals may be evaluated from tables of integrals of characteristic
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¥
functions given in ref. 11. The recurrence relation for ) iven b
g n’ g y

Eq. (4.5.34), can be employed as was done for the uniform beam in

Section 4.5,

Several dimensionless variables were introduced in Section 5.3.
Upon substitution of P, and P, into the integrals in which they appear

two dimensionless factors emerge which are denoted by To and vy

7 - Lot (5-4.6)

o EI,

y = 21 (5:4.7)
TO

Note that all the dimensionless products are taken with respect to beam

section (2).

Upon assigning values to the dimensionless variables and evaluating
the matrix elements the only unknowns in Eq. (5.4.3) are the generalized

coordinates, 9, Eq. (5.4.3) is given by

[A1(q) + n[Al(q) + [Bl1(q) + cosl [CI(q) = (0) (5.4.8)

which is equivalent to

-1
. N - - A C
(q) + n(q) + [A] 1 [B](q) + Ycos§it -[—l—Y—[—]- (q) = (0).
As the final equation form one can then write
(@) + n(@) + [F1(q) + Ycos@: [G] = (0) (5.4.9)
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which is identical to the form obtained in the uniform beam analysis

when the initial conditions are neglected.

Note that each element of column N + 2 in Matrix B and Matrix C
is equal to zero, therefore, it is only necessary to consider F and G
matrices of order N + 1 in the solution of Eq. (6.1.1)- The result is
expected since qQp = 2 is the generalized coordinate of rigid body
translation. Since translation is uncontrolled, the natural frequency

of translation is zero and the translation term g, is arbitrary.

The resultant matrix equation has the same form as the equation
derived in the uniform beam analysis, therefore, identical methods of
solution may be employed. Note that Eq. (6.1.1) of the following section
includes an extra term which accounts for the initial conditicns chosen
in the uniform beam analysis. Consider this term zero in the stepped

beam analysis.
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CHAPTER 6

METHOD OF SOLUTION

6.1 Form of the Equations

The system of equations represented by Eq. (4.5.18) can be

written as

(@) + n(@) + [FI(q) + vcosin [G1(q)

<+

Hesng

[H]s cos s&ir(q) =0 (6.1.1)
s=1

for the initial conditions assumed in Section 4.6.

In the preceding derivations the damping factor n was assumed

to be the same in all modes of vibration. This is by no means an

unreasonable assumption as many systems decay at approximately the

Same rate in all modes of vibration. Furthermore the éssumption

greatly simplifies subsequent aﬁalysis and should be adequate in

determining damping effects.

The velocity term can be eliminated from Eq. 6.1.1) by the

transformation

: n
g =e 7'y (6.1.2)

suggested in (ref. 7). Performing the transformation yields
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. 2 3
(u) + [[F] - i%-[I]J (u) + Ycosfit [G](u)

+ [ [H] cos su_t(u) = 0 (6.1.3)
s=1 L

In the case of zero Y in Eq. (6.1.3) and for t >> 0 (Eq. (6.1.3)).

‘reduces to

. 2 7
) + [m -z mJ (W) =0 (6.1.4)

2
For the system considered, [F] --%— [I] is non-symmetric. A
solution for the'eigenvalues for such a matrix may be found in
(ref. 8). Eq. (6.1.4) yields the damped natural frequencies of a

beam subjected to a non-conservative constant thrust which is gimbaled

to achieve rotational stability.

6.2 Method of Solution

In accordance with (zef. 1), a solution of Eq. (6.1.3) can be

taken as

u = M7 X, (1) k= 1,2,...N+1 (6.2.1)

where x, is a complex Fourier series given by

o

.= [ (e ™ (6.2.2)
m= -

with a period of 2n/%.

Eq. (6.2.1) then becomes
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-]

(w) = §

m==o

(c)m ei (og+m) Nt

. (6.2.3)

A constant a has been introduced which can be real, imaginary, or

complex where its type determines the stability of the system as

shown in Section 5.3,

The forcing frequency and the longitudinal natural frequency

can be restricted to a ratio of

eln
"
- N[

L

(6.2.4)

where n is taken as an integer greater than 1 to facilitate a

solution.

.Substitution of Egs. 6 .2.7) and (6.2.8) into Egs. (6.1.3)

yields

x

- 92 Z (c)m (0 +m?2 e

m=—co

i(q+m) it

X6

) .
+ [m - [11} I (o, et(ovmie

+ o] z_‘m

+7 161 ]
W=

+.§ sgl s

m=-~om

o ei(a+m+1)ﬁt
m

©) ei(a+m-1)§r

m

z (c)m ei(a+m+sn)§t

Z (c)m ol (a+m-sn) Q1 ©6.2.5)
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Equation (6.2.5) is satisfied for all o if collected coefficients

of like exponentials are equal to zero or, in equation form,

2
~ (a +m)? (C)m + -%3 [[F] --2— [I]J (c),

. .
e U O S ONC I

24
l .-
+ —
o2 sgl (H] ) _cn
1 f -
+— 1], (e) =0 (6.2.6)
232 g=1 ° 'misn

m=...-3,-2,-1,0,1,2,3...
J = 1,2,3,...N+1

k = 1,2,3,000N+l

The system of equations represented by Eq. (6.2.6) can be
expanded into a single matrix eéquation as shown on the following
page. To ensure that the determinant of the matrix of coefficients

is absolutely convergent, Eq. (6.2.6) is first divided by the factor

2
%5- (Fyy - i}o - (@ + m)2 (6.2.7)
92

The importaﬁce of absolute convergence becomes evident as the develop-

ment of the method of solution proceeds.

o

Eq. (6.2.8) below is the matrix equivalent of the system of

equations given by Eq. (6.2.6). As shown, the index m ranged from -1
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through +l. There is no upper limit except computer capacity but

a finite value of m can be chosen, say M, which will give

adequate
convergence,
r - . ® 7 ’- . ™
e o o ’ .l_. : 1—‘ e o o ' .
_l’—l 92 D—l,O QZ D-l,l (C)-l
e o o l— D D l_ D * o o (C) = (O) (6.2.8)
02 0,-1 0;0 QZ 0.1 0

The determinant of'fhe matrix of coefficients is here defined

as A(a), and Dj x are the square arrays of elements within A(a). The
?

arrays Dj k are defined by the following equation:
R .
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m,m+l ~

o

€1100/2)  6,,(v/2) vl S1,ne1(Y/2)
| Fli-(etm) 2 F -~ (otm) 2 F ;- (a+m) 2
ey eppevs Gy Ne1(¥/2)
| f‘zz-.(aﬂn)z -1-3'22-(?4111)2 f"zz-(orﬁm)2

l .

| S1,1072) 6y, ,0/2) One1 N+1(Y/2)

3

- 2 o 2 = 2
F33 (a+m) F33 (a+m) F33—(a+m)
| 1 __FLZ___ e 11,841
7 tem? T —(em?
' Fy~Cortm) F; ;= (octm)
I -—-—I"‘L l oese —m__
’ : - H .
I FN+l,1 Fyv1,2 1
Fyy-(otm) 2 §33-(a+m)2
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S S S
By, (172 B,/ Hy g, (/D) |
- 2 _— —
S ) ) S
b e . | Hy,(1/2) Hy,(1/2) HN+1,2(1/2) |
m,m-sn = _ 2 = 2 = 2
| F,, fam) Fo fu-Pm) F,, fuﬂn) |
! . ) : : |
S s
| Buer, 102 By (D) G g, (/2
- 2z o 2 P 2
F33 (o+4m) F33 (o+m) F33 (a+m) |
s = 1’2,3,000
where

2

F,o=1 (p, -1

J corresponding to the row within each array.

The system of equations represented by the matrix Eq. (6.2.8)
can have a non-trivial solution only if the determinant of the matrix

of coefficients equals zero, that is,

A(a) = 0 (6.2.11)

wheré:only the values of o which satisfy Eq. (6.2.11) are permitted.

The problem then is to solve Eq. (6.2.11) for a.

To ensure the validity of the solution the infinite determinant
represented by A(a) must converge absolutely, It has been proven in

(ref; 5 ) that an infinite determinant converges if the product of
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the diagonal elements and the sum of the non-diagonal elements are

absolutely convergent.

The product of the diagonal elements is identically equal to
1 since all elements along the diagonal are equal to 1. This con-

dition was deliberately obtained by dividing Eq. (6.2.6) by
Eq. (6.2.7).

The sum of the non-diagonal elements of A(a) is

s L N-zu N*}lfl = QFg +Y/265 + Hi (1/2)
N = R Fis = (otm)?
J#k
Ml o (v/2) G, + HS,(1/2)
1
+= 7 7 ——Ll Ll (6.2.12)
22 351 mE-w F.. - (o+m)?2
which is convergent by;éomparison with the series z é;. It
n=-« p

can therefore be concluded that A is convergent for all a except

where the factor Fjj - (o+m)? is equal to zero.

In Eq. (6.2.12) convergence is assured for all values of a. A
criterion must be established to determine the minimum value for m,

denoted by M, which will give adequate convergence. A finite M can

be chosen such that the denominator in Eq. (6.2.12) becomes larger

in absolute value for an increase to Mtl. Since M is squared, the

elements of Dj Kk rapidly grov smaller. From the criterion established,
’

M satisfying
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2 _ =
(o + M)< > Fmax ‘

should be sufficient, Flax is the maximum value of the fjj's
in Eq. (6.2.10).

6.3 Determination of the Characteristic Values

The characteristic determinant A(a) has been expressed in arrays,

Dj k,with each array defined in terms of its corresponding elements
14

in Eq. (6.2.9). The postulates of Liouville's theorem may be
employed to establish a solution for the characteristic values,

a, from A(a) as follows:

1. Writing -a for o and -m for m does not alter (a+m) 2.
Transposition of the elements containing 4+m and -m leaves
A(a) unaltered since m assumes all integral values from
- to o, The;efore, 8(a) = A(-a) so that A(a) is an even

1

function of a.

2. [(o+l) + m)2 = [oa + (m+1) ]2, therefore replacing m+l by
m gives (a+m)2. Hence A(a) = A(o+l) proving that Aa has

~a period of 1.

3. Singularities exist only when o satisfies (o+m)2 =~ Ejj =0,
That is when o = + (Ejj)% -m. The possibility that

(Fjj) = m is excluded. Therefore, there is no singularity
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at a = 0. A function can be defined, p.(a) = - 1

’
J cosZau—cosnFi_%
that has the singularities and period of A(a). i3

From 3 it follows that

N+1
H(a) = 8a) - [ g, p () (6.3.1)
=1 7

1

will have no singularities if the constants Kj are suitably chosen.

H(a) must be a constant by Liouville's theorem. By allowing

a»iw, H(a) is evaluated as

" |
H(o) = lim  [ACa) -~ | K, p, ()] =1 (6.3.2)
a*iw j=1 3

since the limit of the summation term goes to zero and all the

elements off the diagonal of A(a) tend to zero as a approaches iw,

J ‘ .
The constants Kl’KZ’KB""Kn+1 are evaluated by allowing o to

- - - S
approach (Fll)%, (FZZ)%’ cee (Fn+l’N+1)’ﬂrespectively.. Letting
= 7 %
a (Fﬁj) + €,

G .
K, = -2t sin 2n(F_ )% lim €A (F.,.? + ¢)

. (6.3.3)
J i B i

In order to evaluate Eq, (6.313) it becomes necessary to define a

new determinant
= (=2 + F .
Aj(a) (-a¢ + Fjj)A(a) (6.3.4)

which does not have a singularity at o = (F j)%' Substitution of

]
Eq. (6.3.3) into Eq. (6.3.4) and taking the limit yields
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7 sin 2n(F, )% -
K, = ] A, (F, %) (6.3.5)
] ?jj 3 33

The characteristic equation can now be written as

N+1 K
1- §] —I—.o (6.3.6)
=1 %3 - %
where
L, = cos ZH(E )% (6.3.7)
3 13 t
and
z = cos Zﬂ& . (6.3.8)
6.4 Stability of Solution N
The characteristic values o of the solutions
T k = 1,2,...N+1
are evaluated from Eq. (6.3.8) as
a=- %‘ In (z + V22 - D) (6.4.1)
n

Solutions to the original differential equation can now be obtained

from the relationship

(@ =" @

of Eq. (6 .1.2). 'qy can now be written in terms of the characteristic

values of Uy e
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(q) = e-%nr . eiawr )

(6.4,2)

(@) = er(iaw—%n) o0

s

(6.4.3)

The stability criteria governing the solutions of Eq. (6.3.3)

-

are established as follows:

l. A solution is defined as unstable if q, tends to + = as T

approaches + =,

2. A solution is defined to be stable if q, tends to zero or

remains bounded as t approaches + =,

3. A solution with period 2 is neutral but q; may be regarded

as a special case of a stable solution.
i
The elements in the column matrix X, have a period'%l which

. Q
is neutral. Therefore stability depends upon eT(law—%n) or, more

specifically, upon the relative values of n and a. The term
(iaw-%n) may in general have any real, imaginary, or complex value

depending upon a and n.

‘a is determined as a function of the computed z value from

Eq. (6.4.1) where z may be real or complex. For convenience Eq.

(6.4.1) is written as

a==-1 1 (re'd) (6.4.4)

27
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a=-i 1ngpe+fo (6.4.5)
2w

where R is the modulus of z + V22 - 1 and B the argument. Then

1} 18
@ =e@TR=-D G (6.4.6)

~

From the criteria established, a stable solution requires that

n >

3 |ot

In R (6.4.7)

or for zero damping that

L mrco (6.4.8)
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CHAPTER 7

RESULTS

7.1 Definition of Terms and Symbols

Section 6.4 established the criterion upon which the solutions of

Eq. (6.1.1) became unstable. In Eq. (6.4.6) a stable solution required

that n 3_%-1n R or,conversely, an unstable solution required that

g.ln R - n > 0. The numerical amount by which G% 1n R - n) exceeds
kil

zero is a measure of the growth rate of the amplitudes of response and
is indicative of the severity of the instability. The forcing fre-
quency at which the term becomes zero is a boundary point separating

regions of instability from stable regioms.

3]

For purposes of identification and of presenting data, the term
governing stability is defined as the characteristic argument and is

given the symboi T where

¢

= 101

T==InR=n | : (7.1.1)

and

R=|z+ V22- 1] (7.1.2)

The system is stable if

T <0 Stable

and unstable if

T > 0. ' Unstable
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The z term can be considered a characteristic value associated
with each degree of freedom chosen as a solution in Eq. (4.5.1). The
form of z clearly determines the magnitude of R in Eq. (7.1.2) and
as such defines the stability of the system through T. Since instability
results if only one solution is unstable, it is necessary to compute

a maximum T value possible from a set of characteristic values.

It is seen from Eq. (7.1.1) that instability can occur only for
R > 1., In turn R > 1 can occur only when z is complex or greater than
unity in absolute value. Section 3.1 classified forcing frequencies
at whiéh instabilities céuld deéelop by types. A real z value exceeding
unity iﬁ absolute value felates(to the Type I, kth order instability
given 5§

- 2w@) |
Q — : (7.1.3)

Complex z values exist as compléx conjugates and relate to the Type

11, kth order instability given by

Wy,

Wi, .
Q=1

(7.1.4)

=1+

The characteristic argument provided a value which could be cal-
culated for any set of beam parameters. When plotted against the forcing
frequency (see for example Fig. 8), the resultant plot could be used to
determine such pertinent information as unstable regions, boundaries
separating stable and unstable regions, relative severity of an unstable

region, damping effects, and longitudinal coupling effects.
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7.2 Natural Frequencies of a Free-Free Beam under a Gimbaled Thrust

The computation of natural frequencies was necessary in determining
the forcing frequencies at which parametric resomance could occur. This
was not, however, a primary objective of this investigation and the

results are given as a by-product.

-

Natural frequencies are plotted for a number of beam configurations
as a function of the applied thrust in Figs. 3 through 7. The frequencies
may be converted from the normalized values plotted to the actual values

by methods outlined in the example problems of Appendix A.

It was established in reference 3 that an unstable condition could
exist due to a static loading from the reduction of a natural frequency
‘to zero or from a coalesgence of adjacent natura;\frequencies, whichever
occurred first. As an i}lustration, coﬁsider Fig. 3 and Fig. 4 which

are plotted for a uniform beam. An instability is seen to exist at

T_ = 25.67 due to the reduction of the rotational frequency,

o m(B), to

zero. This thrust also defines the critical load for inertial buckling.
Fig. 4 illustrates frequéncy coalescence where an instability develops
at approximately To = 15 due to the coalescence of the rotational

mode and the first bending mode.

Natural frequencies are plotted in Figs. 3 through 7 to illustrate
the effects of a variation in a single parameter. The norm chosen in
each figure is that of a uniform beam under the influence of the following

parameters:

N =2, Two bending degrees of freedom
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P

gG = 0.5, Sensor location at midspan

~
(]

6 1.0, Control constant

=
f

= 0.00, Zero damping.

Fig. 3 illustrates the effects of the control comstant, Kg, upon

1 p 3 P, i csmmeen - ALY o s
- the nafural frequencies of a uniform beam. The curves do not reflect

a general trend but do indicate that the control factor has a significant

effect upon the natural frequencies.

In Figure 4 the natural frequencies are seen to be sensitive to the
location of the attitude sensor and for the given choice of parameters
is unstable at a thrust ibwer éhan the thrust at inertial buckling.

Figures 5, 6, and 7rillustrate the effect of beam geometry upon
the natural frequencies., It must be noted that the frequency normali-
zation ifactor, w,, for the stepped beam is based upon the mass distribution,
stiffness, and material properties of beam section (2) and the length
of the total beam. The effect of a variation in sensor location or control
factor is expected to be similar to the effects noted in Figs. 3 and 7-

[

for a uniform beam.

1

It was found that damping decreased the natural frequencies slightly
but the variation was very small. For all practical purposes daﬁped
frequeﬁcies may be consiﬁered edual to undamped frequencies for small
dampiné factors. Although damping did not appreciably alter the natural
frequeﬂcies, the minute shift in frequency could alter the critical
thrust:deterﬁined by a reduction of a natural frequency to zero or fre-

quency coalescence. This phenomenon was not investigated.
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Two important conclusions may be drawn which will effect the pre-

sentation of data in the following stability investigation.

(1) Damping does not appreciably alter natural frequencies for
small damping factors. This indicates that parametric re-
sonance would occur at nearly identical forcing frequencies

with or without'dampiﬁg.

(2) A control system limits the thrust parameter which can be
applied to 25.67 for the uniform beam. It is not necessary
. to investigate the stability of the system at thrust levels
above this value since the system is unstable for thrust

ranges greater than 25.67.

i
.

7.3 Stability

"

The stability inveséigation is limited to forcing frequencies in the
vicinity of predicted first order instabilities, i.e., k = 1 in Egs. (3.1.2)
and (3.1.3). Let it be gleariy?understood that the system under analysis
could and often does develop higher order instabilitieé. In general these
second’order instabilitigs, if they exist, are not as severe as the corr-
esponding first order in§tability. If the 1lst order instabjlity exhibits a
severe nature, then it would be necessary to investigate the 2nd order

instability also.

Figures 8 through 16 form a sequence of graphs valid for a uniform
beam which may be used to determine critical thrust parameters. Critical
}
thrust parameters define the combination of constant thrust T, and thrust ratio

TllTo ét which a parametric instability could develop with some assumed"

i
=

ts ]
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transverse damping factor. Figures 17 through 25 form a similar sequence -
which is valid for a single geometry of a stepped beam. Each change in

geometry would require an additional set of graphs.

Tables 1 and 2 tabulate a range of forcing frequencies in the
vicinity of I = E(l)'i G(j) for a uniform beam and a stepped beam,res-
pectiveiy. The charactefistic érgument, T, defined in Section 7.1 is
tabulated for each forcing frequency chosen for stability investigation.
The damped values were not tabulated since it was found that the damped

and undamped T differed by the chosen damping factor.

2

In Figures8 and 17 the characteristic arguments tabulated in Tables 1l
and 2 were plotted against the corresponding forcing frequencies. The
frequency scale is broken betweén regions of lst order instability to
facilif;te greater resoluéion aéa to provide a more direct comparison'

of the unstable regions. .As plotted, instability exists at forcing fre-

quencies for which T > 0. Dampéd values of T are plotted as dashed

[

lines on the same graphs for a damping factor of n = 0.01 and are seen

to be shifted an amount e&ual to the chosen damping factor.

At unstable forcing frequencies, the T curves plotted as half
circles with a radius cénger at'n = E(i) il;(j)' An exceptibn is seen
to exist in the vicinity of ZG(B} due to the‘developmen; of higher order
instabflities within the‘qnstabie regions of ZE(B). Another exception
developed for regions of instabiiity existing near resonance (see

Figure - 26) .
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Although the reason T plotted as a circular functiom is not clearly
understood, the fact can be used to advantage. A close approximation

can be made to the boundary frequency at T = 0 by

Q@ =[o +w,]+T .3.
be v[m(i) __m(J)] T (7.3.1)
where -
T. = Value of Tat 01 = & +w
x @H = @D
and
%, = Boundary frequency - @ at T = O.

b

The resultant boundaries separé&ing stable and unstable frequencies may
be plofted as 4 versus To withﬁTlfT0 held comstant, or as Q versus Y with
Eo hela constant. The c;oice éf boundary plots are arbitrary. Both
types are included under this investigation. Figures 9 and 10 and
Figures 18 and 19 are exghples of boundary plots of uniform and of

stepped beams, respectively. The curves of Figure 10 and Figure 19

indicate that the boundaries are linear with the ratio, Tl/To‘

7.3.1 Transverse Damping

Figure 8 and Figure 17 clearly depict the effects of damping upon

regions of instability. The damped T values are shifted along the T axis
!

by the value of the chos@h damping factor. The boundaries,‘Qb, are not
appreciably altered in the larger regions of instability when damping
is considered. The magnitude of the characteristic argument, T, was

significantly reduced, however, which indicates that the severity of the

instability is reduced bjfdamping. It is also seen that T is less than zero
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in stable regions, indicating that transverse vibrations damp out with
time. Inspection of the transformation of Eq. (6.1.2) substantiates

this result.

Ty very closely approximates the maximum value of T within an
unstable region except near a longitudinal resonance frequency (see
Fig. .ib). This property,‘coupied with the fact that damping shifts th;
T curves by an amount equal to the chosen damping factor, provides a
method of calculating critical To and Y values when a forcing frequency is

in the immediate vicinity of { = G(i) i_a(j).

A plot of T, versus Y for a range of T, values is shown in the
top half of Fig. 11 through Fig. 14. A line is passed through each
thrust curve at Tx = nj. These points define values of constant thrust
and Y at which instabilit§ is pgssible for the chosen n valﬁe. An
enveloéé curve is construéted in the lower half of Fig. 11 fbrough Fig. 14

plotting critical thrust and Y combinations. Any combination of T, and

Y below this curve is considered stable for the assumed damping factor.
: ; )
Similar curves are given for a stepped beam in Fig. 20 through Fig. 23.

T ”

Boundary plots of the damped systems are given in Figs. 16 and 17

for the uniform beam and in Figg. 24 and 25 for the stepped %eam. The

critical thrust values at each region of instability were located by the
: [N !

curves of Figs. 11 through 14 and Figs. 20 through 24. It can be

seen that transverse damping has a significant effect upon the regions of

instability at small thrust values and that instabilities will not develop

until sufficiently large T and;IllTo values are attained.

T
I
t N M
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7.3.2 Longitudinal Compliance and Longitudinal Damping

Resonance, as used in this study is the term applied when fhe
forcing frequency is in the immediate vicinity of a natural longitudinal
frequency. T. Beal (ref. 3) established that longitudinal compliance
or coupling had a particular strong influence upon the dynamic stability
of a system when resonance occurred at or near ikil.%%t&il.. 1f

damping is neglected the force distribution becomes infinite at

resonance,

Figure 8 is a plot of the characteristic argument, T, of a beam
which is assumed to have an infinitely high longitudinal frequency, i.e.,
;L = o ‘and BL >> Q. ThelT plot;remains constant with a decrease in ;L
until B; is in the vicin{ty of ; parametric resonance frequency. TFigure
26 illdstrates the effect of loAgitudinal frequency upoﬂ thé characteristic
argumenf Tx at parametrié reson;nce. Tx was defined in Section 7.3.

: 4 1 - -
For longitudinal frequencies removed from resonance, w. > @, Tx approached

L
; % = =

a constant, however, at resonance, wp, = 2, Tx became infinite. This is

good reason to avoid all rocket vehicle designs in which the longitudinal

frequency is near the predicted forcing frequency. The expressions

; i
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containing the periodically-varying force distri@ption appear in the
matrix elements of the G matrix of Eq. (4.5.18) in the form of an
integral. Evaluation of these integrals indicates the relative con-
tribution of longitudinél compliance. It is interesting to investigate
these integrals near resonant regions and to determine the effects of

longitudinal damping.

The integrals were evaluated for Q/wL from 0 to 2, with resonance
occurring at Q/w; = 1,2. It was found that the value of integrals
on the diagonal of [G] approached infinity for Q/mL =1 and off=

diagonal integrals approéched infinity for Q/mL = 2,

A curve is presented in Fig. 27 evaluating the integral of the

matrix element Gy41,n5+1 for variations of Q/w .

For reference, the integral values are taken as the real part

1
of f d*df where 9* has been defined as
o

- 3
o = sinm (G%-ig)?E
. L
siann(o2-ig)?

by Eq. (4.4.17). The curve was plotted for damping factors of g = 0.00
and g = 0.04. Damﬁing is seen to have a negligible effect at forcing
frequencies removed from the immediate vicinity of resonance. At
resonance, however, integral values become finite with damping and
actually pass through zero since the integral values change in sign at

resonance.
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A curve of Q versus T is plotted in Fig. 28 for forcing fre-
quencies in the vicinity of 25(1) and resonance. Curves are plotted for
damping factors of g = 0.00, 0.04, and 0.08. The amplitudes of T become
infinite for a damping factor of g = 0.04 but the region of instability is
not appreciably altered. A narrow stable region develops at Q= 2.0
for g = 0.04. This paradoxical result can be explained by observing that
the integral values illustrated in Fig. 27 pass through zero at resonance.
The regions of instability are seen to be divided into two unstable regiomns
with a damping factor of 0.04. A damping factor of g = 0.08 further re-

duced the amplitudes of T, and eliminated the region of instability existing

above Q = 2.0.

Fig. 28 is a grapﬁ of boundaries of instability for a longitudinal
frequency of GL = 2.0 wiéh zero transverse damping. The region of
instability at Q= ZE(]) is seen to be extremely broad. For comparison
a similar plot is given in Fig. 8 with w; = =. Longitudinal compliance
exerts a maXimum influenée when resonance occurs near G(i) i_G(j).

An additional instability developed at {i = 4 which is not predicted in the

usual theory of dynamic stability where longitudinal coupling is neglected.

A damping factor of 0.04 did not appreciably alter the boundaries
of instability at Q= 26(1) as seen in Fig. 28. Fig. 29 plots boundaries

of instability for a longitudinal damping factor of g = 0.08. Over-

damped regions are crosshatched. The instability at 2 = 4.0 damps out
and the width of the unstable region at Q= 25(1) is narrowed slightly

while other boundaries are unchanged.
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7.3.3 Effect of Initial Conditions

Conditions for solution were highly restrictive upon inclusion
of initial conditions. It was assumed in this investigation that
initial conditions would exert a maximum influence on the transverse

motion at a forcing to iongitudinal frequency ratio of 1:2.

The initial conditions chosen for analysis were those of zero
velocity and zero displacement as taken in Section 4.6. Solutions

for the characteristic values were taken at {I = E(i) i.ﬁ for a

(i)
longitudinal frequency of 2%. A tabulation of results is given in
Table 2 in terms of T computed at the predicted unstable forcing

frequencies with and without the inclusion of initial conditionms.

The resultg indicate that zero initial conditions do not
appreciably alter the dynamic stability characteristics of the system.
Furthermore, the results do not substantiate a conclusion as to
whether initial conditioﬁs reinforce the response in unstable regions.
It is noted that for a couple of unstable frequencies, initial con-

ditions actually tend to stabilize the system.

1%
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CHAPTER 8

CONCLUSIONS

8.1 General Conclusions

A restatement of conclusions obtained in preceeding investigations

and substantiated in this report are given below.

1.

2.

3.

Unstable solutions occur for frequencies of variation of the
thrust in the vicinity of twice one of the natural frequencies
of the bending modes, or the sum or difference of two of these

frequencies (see, for example, Figs. 8, 9, and 10).

The width of the unstable regions stated above is approximately

linear with a ratio of Y = T;/T, (see for example, Fig. 10).

A . :
With finite longitudinal compliance instabilities also occur

for frequencies of the thrust variation in the vicinity of the

longitudinal natural frequencies (see, for exaﬁple, Fig. 29).

Longitudinal compliance has a negligible effect at forcing

frequencies removed from the longitudinal natural frequencies.

8.2 Effects of a Stepped Beam Configuration Upon the Dynamic Stability

A beam composed of two uniform sections joined by a rigid bulkhead was

analyzed (see Section 5) and the following results were established.

1.

The natural frequencies shifted as expected with any change in
mass, moment of inertia, or location of step (see, for

|
example Figs. 5, 6, and 7).
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2. As a result of a shift in frequencies the regions of parametric
instability shifted accordingly. The width and severity of the
instabilities were altered but no trends were established in

this analysis (compare, for example, Figs. 8 and 17).

8.3 Effects of Transverse Damping

Transverse damping was found to be a significant factor in determining
regions of parametric instability for the system investigated. The follow-

ing salient results were established:

1. A pulsating end thrust will not sustain transverse vibrations

unless the system is unstable.

2. Some regions eyisting as very weak instabilities are completely

eliminated with damping.

3. Instabilities may result for sufficiently large thrust and
Tl/T0 ratios; conversely, damping prohibits the formation of a

parametric instability at lower thrust values (see, for

example, Figs. 7.6, 7.7, 7.8, and 7.9).

8.4 Effects of longitudinal Damping

Regions of instability developed at resonant frequencies which are

not predicted in- the usual theory of dynamic stability., In addition,

critical regions within the vicinity of a resonance frequency were many
orders of magnitude more severe than the same critical region away from

resonance. Inclusion of longitudinal damping produced the following effects:

14
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1. Longitudinal damping had no effect on unstable regions removed

from resonance.

2. Unstable regions which existed near resonance were narrowed

slightly and reduced in severity but the instability remained

quite severe.

3. Instabilities which developed at resonance were eliminated

with longitudinal damping.

Critical regions near a resonance frequency develop very severe instabil-

ities even with large 16ngitddina1 damping factors.

8.5 Effects of Zero Initial Conditions upon Regions of Instability

The effect of initjal conditions on critical regions was inconclusive.
Results (see, for example, Table 3) indicate that the effects may be

considered slight.

Limited experimental work (ref. 1) for beams subjected to a pulsating
loading indicate that unstable conditions do not in general precipitate
violeﬁt response conditions. 1t was found that the response curves
increased exponentially for a period of time then stabilized at some

higher amplitude response.

Since the transienF solution damps out completely with time, the
contribution of initial conditions would damp out as the amplitudes
of response increase under unstable conditions. The transient solution
could not sustain or appreciably reinforce amplitudes of response over

a period of time.
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The investigation substantiates the positian that initial conditions

may be neglected in the analysis of parametrically-excited systems.

8.6 Suggestions for Further Study

The modern launch vehicle is a highly discontinuous structure. Due
to fuel consumption during flight the mass properties are under continuous
change. It is possible that parametric instability could exist during
some time interval. 1In order to determine if parametric instability occurs
during some portion of a missile flight it is necessary that quantitative
results be available. Such quantitative results are not available by

exigtin

distributions in the investigation of the dynamic stability of modern space

f . .
vehicles, it may be desirable to employ representative lumped-mass systems.
Such a simplification has been used effectively in calculating natural fre-

quencies.

.It is proposed that a method of analysis be devised for investigating
the dynamic stability of highly discontinuous structuges. The analysis
would be specifically driented toward existing space vehicles. The pri-
mary objectives of the proposed investigation would be twofold; (1)
establish a simplified énalytical model which would adequétely describe
the mass and stiffness ?istribution, and (2) determine forcing frequencies

at which instability is possible due to parametric resonance. Such

quantitative information could be directly applied to an actual vehicle.
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TABLE 1

CHARACTERISTIC VALUES - UNIFORM BEAM

j - 1
€ = 0.50 RKg=0.5 |G, == 1 T, = 20.0 {Y = .10 n=2001]g=0.0
. ]
0 T cosZrna
i 7
{REAL |-.87719 -.04559 -1.12299
.371 .05799 ;IMAG 0 e 5
i _ — - ]
374 .05630 . 84207 .37565 1.11392
0 0 0
-.96003 -.96003 ~-.47932
-375 -02830 +.08370 -.085/0 0
.376 ‘03233 -057301 -087226 -1003672
8 0 0 0
- -.69751 -.97429 ~-1.05706
Zm(B) .383 ,pao94~ 0 o o
‘ .388 03922 -.95577 -.55875 -1.05098
- - 0 0 0
398 02834 - ~.23829 -.25696 -1.02518
X 0 0 0
A
- .49510 .54281 -.59028
1.064 0 o 5 0
.51588 .51588 -.56769
1.066 -00689 -.01740 +.01740 0
| , .50970 .50970 ~.52150
! 1.070 +01724 -.04357 +.04357 0
| 49371 .49371 -.40105
1.080 -02812 -.07126 +.07126 0
. f 46111 L 46111 -.14765
“@®ay | 1.100 03404 1~.08649 | +.08649 0
! i
N ' 'I
i _ | 78824 -.73128 -.99998
', 0
f 1.812 ! 0 0 0
87




- - - T

TABLE 1-Continued

CHARACTERISTIC VALUES - UNIFORM BEAM

-~ 1§
£ = 0.50f Ky = 0.5 B = T, = 20.0 |y = .10 n = 0.0 f g = 0.0
Q T cos2rna
' REAL | 78858 -.72643 -1.00000
1.814 .00114 IMAG 0 o 3
= .78958 -.71173  |-1.00004
259y 1.818 .00493 0 o 0,
1.822 .00280 .79058 -.69678 -1.00001
0 0 0
.79091 ~-.69174 -.99999
1.824 0 | 0 5 5
' -90581 972058 C 54161
N
2.665 0 0 0 5
A .91052 .91052 . | -.53693
2.672 '?1002 +.00487 ~.00487 0
i .90775 .90775 -.53225
2.679 +01847 +.00910 -.00910 0
. . § i .90193 .90193 -.52292
W a :
®)*2) [2.693 | .02311 +.01167 +.01167 0
.89576 .89576 -.51363
2.707 -01851 +.00956 -.00956 0
i ’ " .89256 { .89256 -.50899
2.714 -01012 i +.00528 -.00528 0
) .89734 .88120 -.50436
2.721 0 0 0 0
- =" X ; .93834 -.10222 -.1052
w(2)+ui() 3.411 0 0 0 0 6
- .97089 < 40950 -.99994
4,971 0 0 0 0
4.975 .01161 .97098 .41117 ~1.00003
' 0 0 0
232 5.003 .02659 .97126 .41617 -1.00014
g 0 0 0
5.027 01155 .97153 42111 ~1.00003
0 0 0
5.035 0 | .97162 L42274 -.99994
" ] 0 0 0
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IABLE 2

CHARACTERISTIC VALUE - STEPPED BEAM

= = 2 = « | = = i
Eg= 050 | Kg = 1.0 | @ = } o= 200 Y =010 0.00
3 i $
| ] _ T T
| € =0.6] A=0.06 | I=0.06)]
! C
| | i |
Q 1 cos2na
.422 i 0 REAL '+.40135 1-.44838 | -.89637
B v M I
434 iocoogz3’ §+571929 .97760  -.97760
; . L -.014°3 | +.01473
w6 o 00541é +:92008 -65398 §~1,00072
i o — _
7 5 406 go 041102 +.63676 -+ 48731 1-1.03410
520 50”02421| +14716 ]-.80233  }-1.01070
_ ; — | - =
533 'i* 0 -10557  -.99109 | -.9991
= =} =
| é ' :
} : : : i
L oo +.39890  '+.55177 +-23434
c '0.02212 " +.66801 | +.29486 |+ 29486
1.125 :0 | o 105007 l+.05907
. i § .
i ! '+.79968  '+.27358  i1+.27358
1139003857, L -.10256  1+.10256
- - I f i T, e i
PN ﬁ T 04753 '+.94892  '+.23086  +.23086
R e e T s T N Ty
g . I+.99990 I+ 18849 i+-.18849
1.196  10.03743 o - 09672 |-.09672
| | Ll : . i
1.210 0.018 2' +~99090 i‘f—1677l +.16771
| j0-01892 TUFTR 002 1 oasas
La2s | o | +.96117  1+.23124  i+.06336
) | | : - i - -
i | [ ! i
i | | H
i S z !
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TABLE 2 - Continuead
CHARACTERISTIC VALUES - STEPPED BEAM
_ N z —
£ =0.50 | Rg = 1.0 | & == | T =20.0 | 7= 0.10 | n = 0.00
' ~}
tc =0.6] A=0.6 | 1I=0.6
[}
Q T cos2va
1,461 | 'REAL | .47731 i-.65166 |-.67122
jimac | _ [ —
T 47932 -.67480 67480
7 13 . - 3 'r:p(‘ - -5 L4
1-464  10.00710 . _ {--Cl124 [+.01124
i | .48145 [-.68786 |-.68786
1.468 . | Poed i=o .
0.01049 L |-.01630 {+.01630
- — . | | .48586 1-,71303 |-.71303
Wy ~ 9yl 1473 jo-01218 | {-.01819 |+.01819
©.49036  -:/369Z [=,/3692
1.483 ,°°°°893 i - (-.01279 '4.01279
~ ' ’ | 49262 |-.7483% [-.74839
1.486 0.00235 L - -.00329 |+.00329
[ o P ~
1. 490 0 ! | 49488 [-.74613 77291
| = = -
E . : !
! ] | z a
T P ' 63754  !-.36334 |-.99994
1.80 1 0 | S i “3fi3 ”
1.832 lo.co27 ; | -65843 g‘,35299 ;-1¢00001
1 é P !
1.835 000618 | | -65932  -.34263 |-1.00006
; i p— | — ; —
25(1) 1.839 0.00823 | 66108 E*:32187 i -1.00010
: P - I -
i ! i
1.844 10.00696 © +66283  1-.30106 (-1.00007
| ; - N s
7 b -
10847 Or00451 ! *6630 ; o29065 1700003
H — i -_ —
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TABLE 2 - Continued

CHARACTERISTIC VALUES - STEPPED BEAM
Eg = 0.50 | Kg = 1.0 GL == To = 20.0 Yy =0.10 { n= 0,00
Ec = 0.6] A= 0.6 I=0.6
Q T cos2my

9 615 0 REAL|. 85513 -83505  |-.59649

IMAG: —_ - -
2.622 Jonoo953 N Bipvoni gnggéi? ~-59181
Beg) + Bgy| 2.643 0.02300 !_:giggg _fﬁfggg ~+57783
ves joowen | B0 LR |

|
2.671 0 -82566 | .80544 |-.55926
| !

4. 740 | 0 44? easel | 3a4si 99984
4.753 | 0.01830 i 694;;9 534;51 -106;607
4. 765 0.03329 094257 :33829 ‘-1ﬁ6;624
255, 4.790  10.04152 ¢94Z?2 0353?9 _1c92937
4.815 0.03312 | .94805 E 36221  [-1.00023

i —_ — .
4.827 0.01785 RECITED E -36510  1-1.00007

- | - -
4. 840 i 0 '\ .94858 } 236796 |-.99984
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TABLE 3

EFFECTS OF INITIAL CONDITIONS UPON STABILITY

G OGN MR R AN AN W) AN S My SN E0 AN A B G5 A N e

€c = 0.50 Kg = 0.50 To =20 ] Y=0.10| n=0 g=20
a wr, T

WI1THOUT WITH

INITIAL INITIAL

CONDITIONS CONDITIONS
~2m(B) 0.383 0.765 0.05141 0
Zm(l) 1.818 3.636 0.01509 0.01724
2“(2) 5.003 10,007 0.03482 0.03495
w(1)+w(2) 1.100 2,201 0.03803 0.03408
w(2)+w(B) 2.693 5.386 0.02475 0.02727
w(2)+m(l) 3.411 6.821 0 0
w(l)-w(B) 0.718 1.435 0 0
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APPENDIX A

PROBLEMS

Two examples are presented which convert normalized parameters used
in the presentation of results into terms and values that are familiar

’

to the reader.

A ver& serious limitation exists in the direct application of the
results of the analysis. A rocket vehicle is a complex structure whose
structural weight is only a small percentage of the total. The assumption
of an equivalent cylindrical beam accelerating through space due to some
thrust could lead to incorrect conclusions if the mass of the propellant

was not considered in evaluating natural frequencies.

In order to avoid calculation of a natural frequency by assuming an
)
equivalent mass distribution which will compensate for the mass- of th§
propellant, a natural frequency will be chosen which approximates the
natural frequency of an actual rocket vehicle under zero thrust. These

natural frequencies could be available from experimental investigatioms.

An equivalent stepped beam would be a better approximation than an
equivalent uniform beam, however, certain assumptions must then be made
regarding the ratio of the masses and the ratio of the moment of inertias
between uniform sections. The location of the discontinuity must also be

assumed. At best this must be an "educated guess'" approximation.

Examples have been chosen within the range of parameters chosen
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in the illustration of results. The stepped beam stability evaluation
considered only one beam geometry. Any other configuration would require

computer utilization.

Consider a rocket vehicle under the same limitations and environment

as the analytical model chosen. A typical fundamental frequency of a large

rocket vehicle is approximately 2m rad/sec. The overall length of this

vehicle is 4800 in.and the acceleration attained is 5g (g is the acceleration

due to gravity). The rocket engine pulses at some arbitrary frequency,
2, and the amplitude of the periodically-varying portion of the thrust

is 10 percent of the constant thrust value, T,s that is,

T= Tn + T; cosft
and

T
=L _ 6. 10.
T

o

Example 1: Uniform Beam Approximation

Assume that the mass and stiffness distribution of the vehicle des-
cribed above can be approximated by a uniform beam. A reasonable thrust

value can be established from the equation

TO = mfa

where a is the longitudinal acceleration attained. From Eq. (4.4.15)

AL’ = wZ Pl_&.l:
n n g
x; =.500.6, from tabulated results in (ref. 7).




From Eq. (4.4.12)

2
. TR

T
° EI

which can be written in terms of the acceleration as

A% a
= 22 1
To mia ET wi 7

‘The thrust parameter can now be evaluated as

_ (500.6) _(5g)
°  (am? (4800) °

=3

g = 386 in/sec?

TO = 5.1

~

The natural frequencies of the rocket under thrust can be obtained from

the relationship

) T Y@ %
where a(n) is obtained from the curves of Fig. 3 or Fig. 4, (something

must be known about the sensor location, EG’ and the value of the control

factor, KB)'

A stability evaluation with damping can be made in Fig. 15. It is
seen that no instabilities may exist for To = 5,1, for any forcing fre-

quency.




Example 2: Stepped Beam Approximation

Assume that the mass and stiffness distribution of the vehicle is
best approximated as two uniform sections (see Fig. 1(b)). Some assump- -
tion must also be made regarding the change in mass and the change in
moment of inertia between the assumed uniform sections. Therefore let

it be assumed that

.06

my

I -

L .7T-0.6

I
but

m(x) « A(x) from Eq. (5.1.4)
‘therefore

m A -

A, Xl =A=0.6.

The fundamental bending frequency of the vehicle was taken as 27

rad/sec. Unlike the uniform beam approximation this frequency can not

be applied directly in determining To' Figure 7 plots normalized natural
frequencies versus the applied thrust parameter To‘ At To = 0 the

normalized natural frequency of first bending is plotted as

w(l) = 0.974
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but
R ¢
(1) w
1
therefore,
w
oy =D
@)

Since Wegy = 2w is the true natural frequency of the rocket at zero thrust

oy
the normalization constant w; can then be calculated as

= 6.55,

The thrust required to impart the desired acceleration can determined

from the equation

where

MT = total mass of the vehicle
a = longitudinal acceleration.

An expression for Eo in terms of T  is given by Eq. (5.4.6) as

- Toh2
To = EI,
then

4
_ 22 a zmzﬂ,
T =MTa = MT wl EI .
o Ely m2w222 2

1
mog

wf 2L Xg = 500.6 (ref. 7)

EI,




| | l - -l‘

Mp 2+ (m,-m,) (2-2.) )
— = m1 2 1 1 -1 EC(I-A),

Therefore,

)\'4

=1
]

[1-¢&@G-A]a

2
wl L

[1 - 0.6 (1-0.6)] (500. 5)(5)(386)
(6.55)(4800)

3.56.

A stability evaluation with damping can now be made from Fig. 24.




APPENDIX B
COMPUTER PROGRAMS
B-1 General

This appendix presents two FORTRAN IV Computer Programs that are
operationally compatible with the FORTRAN processors of the IBM 7094

and the UNIVAC 1107 digital computers.

Independent computer programs were written for the uniform and the
stepped beam analyses. The stepped beam computer program is adaptable

to the uniform beam analysis but does not have the capabilities of

handlin

itudinal damping or initial condition consideratioms.

09
09
|

The computers capacity to perform complex algebra internally was a
great asset in evaluating integrals with complex arguments. Complex
arguments result in application of Eq. (4.5.34) to integral evaluation
with or without the inclusion of longitudinal damping. The real part
of the result could be retained as a solution. It was found that a
high degree of accuracy was attainable where the results could be

checked by formulas.

Computer capacity became a problem as more degrees of freedom were
used in the assumed solution. As presently programmed, only two bending
modes and a rotational mode, that is, three degrees of freedom are
taken. A choice of more degrees of freedom could exceed the capacity

of the computer for étability analysis of forcing frequencies near zero.




This is evident by examining the convergence criteria established for
the infinite determinant in Section 6.3. A maximum of four degrees of
freedom could be handled with slight modification to the program

(see B~5).

B-2 Program Variables

B-2.1 Imput Variables Used Only in the Stepped Beam Program

Input Program Increment Increment Range of

Variable Symbol To By Variable
MIN. MAX.
-
Eq XG XGMAX DELXG 0.0, 0.1, 1.0
-
Ee RC RCMIN DELRC 0.0, 0.1, 1.0
A RA RAMIN - DELRA 0.0, ©,—
I RI RIMIN DELRI 0.0, * ,—

B-2.2 Input Variables Used Only in the Uniform Beam Program

Input Program Increment Increment Range of
Variable Symbol To By Variable
g GA GMAX DELG 0.0, ¥, —

B-2.3 Input Variables Common to the Stepped Beam Program and the Uniform
Beam Program

Input Program Increment  Increment Range of
Variable  Symbol To By Variable
T, TO TOMAX DELTO 0,0, =, —
A-8




Input Program Increment Increment  Range of

Variable Symbol To By Variable
wp OMEGL OLMAX DELOL 0.0, » , —
n ETA ETAMAX DELETA 0.0, » , —
Kq SPC SPCMAX DELSPC 0.0, » , —
Y GAMMA GAMAX DELGA 0.0, - , —

B-2.4 Qutput Variables

Program Equivalent Definition

Symbol :

FREQ(1) B(B) Rotational frequency

FREQ(2) B(l) lst bending frequency

FREQ(3) wo 2nd hending frequency
.~ (z) (=] S

ROOTR Real z See Eq. (5.3.8)

ROOTI Imag z See Eq. (5.3.8)

STAB1 T Characteristic argument

see Eq. (7.1.1)

OMEGB ‘ Q Forcing frequency

B-2.5 Program Control Variables

Program control symbols establish program branch routes to be
used, output formats written, and the reading of additional data cards
which change the preceding input variables. The control symbols and

their function are given.below.

o




Program Numerical Function
Symbol Code

ITR 0 STAB is called from DRIVER

: 1 SWITCH is called from DRIVER
NAT 1 Computes Natural Frequencies only

) 0 Stability evaluation '

ICOUNT . 0 READ additional data cards

' 1 Read additional data cards after

location 401
2 Stop at completion of original

set of input variables.
B-3 Usage ’
The preceding section lists all program variables which may be incre-
mented within the program DRIVER (see B-5 and B-~6). The range over which
a variable can be incremented is given by the columns under min and max

signifying the minimum and maximum values permissible. The direction

" arrow over a numerical value in the column between the min and max

columns is the permissible increment and the direction of incrementation;
i.e., from a low to high (*) or from a high to 2ow («+) value. A dash (=)

indicates that any positive numerical value is acceptable.

For example, consider the variable which locates the sensor location.
This parameter is denoted by the symbol XG. If it is necessary to hold
XG constant at, say XG = 0.6 throughout a computer run then the data card
corresponding to XG must be filled out according to the format allocated

to XG, XGMAX, and DELXG. 1In this case

XG = 0.6

- A-10




XGMAX

]

0.6

and DELXG

0.1. (Note: DEL~-- is greater tham 0.001)

1f, instead it is required that XG be incremented during a run then
the following procedure would be followed. Supjose that it is necessary
that XG be run at XG = 0.6 and XG = 0.8, then the data card corresponding

to XG must be filled out as follows:

XG = 0.6
XGMAX = 0,80
DELXG = 0.2.

The program variables RC, RA, and RI are incremented downward. When
RC, RA, and RI are followed by MIN, i.e., RCMIN, this represents the value
to which the parameter is incremented. When preceded by DEL, the symbol
refers to the amount by which the parameter is incremented. If for

example, it is required that RC be taken at 1.0, 0.8, and 0.6 then

RC = 1.0
RCMIN = 0.60
DELRC = 0.2.

The program has three output formats written into the program (see,

for example, B-5).

~Format (1) tabulates three natural frequencies which exist for some
input Eo value, The thrust and resultant frequencies are tabulated in
columns under the appropriate heading. Pertinent data constants are also
included in the heading. To obtain this type of table set NAT = 1 and

fill out the data card for TO according to the increments of TO desired.
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Format (2) is a tabulation of the stability evaluation for a forcing
frequency existing at parametric resonance. This format is obtained by

setting NAT = 0 and ITR = O,

Format (3) is a tabulation of the stability evaluation for a ramnge
of forcing frequencies existing at and around parametric resonance. This
fprmat is used in conjunction with SUBROUTINE SWITCH,a routine that
automatically increments OMEGB if the initial value of OMEGB is unstable.

This format is obtained by setting NAT = 0 and ITR = 1.

The control variable ICOUNT may be employed for extended parameter

. investigations. For example, it becomes necessary to redefine program

input wvariahlee for an extended computer run. Tn this case set ICOUNT = 0
and furnish the appropriate READ and data cards to the source deck. If

the input variables do not change set ICOUNT = 1.

B-4 Restrictions and Recommendations

As presently programmed only two bending degrees of freedom (N = 2)
may be used without modification of the programs. SUBROUTINE STAB
contains the formulation necessary in expanding Eq. (6.3.6) into a form
suitable for the polynomial root solver SUBROUTINE MULLER. Additiomal

formulation would be required for N # 2.

Longitudinal coupling effects were found to be negligible for
OMEGL > 50.0. The program is most efficient for OMEGL > 50.0 since a

number of computations are eliminated.
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The stability evaluation for small forcing frequencies (OMEGB < 1.0)

may be in error due to truncation of terms in the evaluation of the

infinite determinant in Eq. (6.3.5). A warning will be given in this case

and the program will continue to operate. The computational time required )

at smaller forcing frequencies (OMEGB < 1.0) is also much greater.

Several library routines were used in matrix and determinant oper-

ations. These routines are listed below with the operations performed.

SUBROUTIKRE

HESSEN

PURPOSE
Evaluation of the eigenvalues of a non-
symmetric matrix
Evaluaiiou of a ceal determinant
Polynomial root finder

Inverse of a real matrix

Any routines which perform the same functions can be substituted into

the program.
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B-5 Uniform Beam Computer Program

The computer program used in the analysis of a uniform beam is listed
in this appendix. Library subroutines are listed by name with variable
array dimensions without a complete listing. Program input data is
listed at the end of the program with the resultant output listed

immediately following.

The output formats are listed as format (1), format (2), and
format (3). These formats are obtained in one computer run using the .

program source deck and data deck listed.
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10
46

PROGRAM DRIVER

DIMENSION R(5)¢B(S)1PH(S) »DPH(5) »DPHG(S)
DIMENSION F(b¢8)rG(8e8B)eH(50098)¢RTR(8)r RTI(8)
DIMENSION FF(8¢8)eFG(8¢8)FH(5:8+8)
COMMOIN ReBoePHeDPH»DPHG

COMMON NePIeXGeSPCrTOrOMEGBr GAMMAYETAYP»Q*S
COMMOIv OMEGL fLLV¢GA

COMMON FoeGeH

INTEGER SePe

READ(5¢5) NeXGeP1sS1,P1

READ (9e 6) (RCI)eB(I1)PH(I) +DPH(I)» I=1:5)
READ(S« 7)) (DPHG( (I} e I=1¢5)

READ(S¢8) FQrFQMAXIDELFO

READ(5¢8) OMEGL»OLMAX DELOL
READ(S¢8) ETAETAMAXDELETA
READ(H¢8) SPCeSPCMAX»DELSPC
READ(5¢8) GAMMA s GAMAX »DELGA
READ(5¢8) TOTOMAXDELTO

READ(b¢8) GAGMAXDELG

READ(H»500) ITR/NAT»ICOUNT

FORMAT (31%)
FORMAT(13¢3t7¢001E12¢0:36X)

FORMAT (4E12.0024X)
FORMAT(5E12.0012X)
FORMAT(3E12.00,36X)

CONTINUE

LV =2 1

@ = Fu + .5

P = Pl

S = 51 + ,5

FQl = FQ

FETA = ETA

FTO = 70

FSPC = SPC

FGAMMA = GAMMA

FOMEGL = OMeo6L

FGA = GA

N1 = Ntl

IF(SPC.EQ.0.0) NI=N

CALL COEF(F+0oH)

DO 10 JU=1eN1

DO 10 K=1»N1

FF(JrK) = FlJeK)

FG(JrK) = G(JeK)

DO 9 1=1,5

FH(IrJeK) = H(IsJrK)
CONTINUE

CONTINUE

IF(NAT.EQ.0) GO TO 45
WRITE(0+501)

WRITE (6,28)

WRITE(6027) GAMMA»NeOMEGL/ETA+SPCrXGrGA
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28

60

70
27

45

16

12
13

120

110

130

14

501

502

200

WRITE(6+60) (1eIZ1sN1)

FORMAT(///7/7720X:29HNATURAL FREQUENCIES///)

FORMAT (15X3HTO +8XSHFREQ(I1siH)sBXSHFREQ(I1¢1H) »8XSHFREQ(I1e1H)/)
FORMAT (13Xe1F5e¢1¢3F15.6//)

FORMAT (BX6HGAMMAZF 4 4204Hy N=1l197H/OMEGLZF6.,2r6Hy ETASF4.396H, SPC=

IFL44,2¢5HY» XGZFSe1le5He GA:F“.}/)

CONT INUE

TOR4G = TO/R(1)*x4

DO 13 J=1eN1

DO 13 K=1,N1

F(JrK) = TORU*FF{(JeK)

G(JrK) = TORG*FG(JWK)
IF(OMLGL«GT+5060) GlJUrK) = F(JrK)
IF(J.EQe(N+1)) GO TO 16
IF(JeEQeK) F(JrK) = FlJrK) + (RIJI/R{1))%x%4 = (ETA*ETA)/4,.0
CONT INUE ~
DO 12 1=1.5

H(IeJoK) T FH(I+JeK)*TORY
CONTINUE

CALL HESSEN(FeN1)

CALL QREIG(F+N1/RTReRTI,0)

N1IMl = N1-1

DO 110 I=1l.in1M1

1Pl = J+1

DO 11U J=IP1leN1

IF(RTRU1)=RTR{J)) 110,110,120
TEMP = RTR(1)

RIR(1) = RTKR(J)

RTR(J) = TEMP

CONTINUE

DO 130 I=1r,iN1l

RTR{1) = SQRT(ABS(RTR(I)))

DO 14 J=Z1eN1

DO 14 K=1.N1

FUJoK) = TOR{*FF(JeK)

IF(JebQe(N+1)) GO TO 14

IF(JEQeRIF(JrK) = F(JeK) + (R(J}I/RUL)I*xy =~ (ETA*ETA)/4.0

CONT INUE

IF(NATEQel) WRITE(6e70) TOr (RTR{I)I=1siNl)

1IF(NAT.EG.1) GO TO 300

FORMAT(1H1)

WRITE (6+501)

DO 20U KZ = 1+ NI

WRITE(6¢502) KZ

FORMAT (/712X 46HCHARACTERISTIC VALUES IN VICINITY OF 2 X FREQ(Il»1

1H)/77)

WR1TE(6e60) (1e]l = 1oN1)

WRITE(6e70) TO»(RTRUI)#IZ10N1)

OMEGB = 2.0 * RTR(KZ)

WRITE(6+27) GAMMAN/OMEGLETA,SPC» XGrGA
IF(ITR.EQ.0) CALL STAB(ITS»STAB2)
IF(ITR«EQs1) CALL SWITCH(OMEGBDELOM)
CONT INUE

WRITE(6,501)

DO 201 KZ = 1Nl

DO 201 JZ = 1, N1
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503 FORMAT(//12X+42HCHARACTERISTIC VALUES IN VICINITY OF FREG(Ils1H) 9

201

S04 FORMAT(//12X+42HCHARACTERISTIC VALUES IN VICINITY OF FREGQ(I1s1H) .9

204
300

401

IF(KZJEQeJZORWKLZ.6TLJZ) GO TO 201
WRITE(6¢503) JZrKZ

1H + FREQ(I1le1H)//)

WRITE(6¢60) (1¢I = 1vN1)

WRITE(6¢70) TOe(RTR(1)I=1/N1)
WRITE(E227) GAMMA/N+OMEGL ¢ETA»SPCeXGrGA
OMEGHB = RTR{JZ) +RTR(KZ)

IF(ITR.EQ.0) CALL STAB(ITS!STAB2)
IF(ITReEG.1) CALL SWITCH(OMEGB+DELOM)
CONT INUE ‘

WRITE(6+¢501)

DO 204 KZ = 1+, N1

. DO 204 JZ = 1+ NI

IF (KZ+EQeJLeORKZGTeJZ) GO TO 204
WRITE(6r504) JZv» KZ

IH = FREQ(I1l,/1H)/Z/)

WRITE(6e60) (1eI = 1.N1)
WRITE(6¢70) TOs(RTR{IX»IZ1N1)
WRITE(6rs27) GAMMAIN+OMEGL +ETA»SPCIXGrGA
OMEGB = RTR{JZ) = RTRI(KZ)
IF(ITR.EQel) CALL SWITCH(OMEGB(DELOM)
IF(ITR.EQ.0) CALL STAB(ITS,STAB2)
CONT INUE

CONTINUE

TO = O + DELTO
IF{TOLTS{TOMAX+0,001)) GO TU 45

T0 = FTO

OMEGL = OMEGL + DELOL
I1F{OMEGL «L T« (OLMAX+0+001))G0 TO 45
OMEGL = FOMLOGL

ETA = ETA + DELETA

iF (ETALT(ETAMAX+0.001))G0 T0O 4o
ETA = FETA

SPC = SPC + DELSPC

IF(SPC.LT (SPCMAX+0,001))6G0 TO 1%
SPC = FSPC

GAMMA = GAMMA + DELGA

IF (GAMMA.LT. (GAMAX +0.0011))GU TO 45
GAMMA = FGAMMA

GA = GA + DtLG
1F(GAJLT.(GMAX+0.001)) GO TO 15

GA = FGA

IF(ICOUNT.EGs2) STOP
IF(ICOUNTE@el) GO TO 401

READ IN ANY CHANGE OF PARAMETERS HERE
READ(5¢8) TO»TOMAXDELTO
READ(S¢500) ITReNAT» ICOUNT

G0 TO 400

CONT LinUE

READ(S+500) ITReNAT» ICOUNT

GO TU 400

STOP

END

A-17




11

12

20
21

74

84

75

65

9U

SUBROUTINE SWITCH(OMEGB.DELOM)
FOMEGL = OMLGH

LOC4 = ¢
LOC1 = 0O
LOC2 = O
LGCS = U
CONTINUE

CALL STAB(ITSSTABZ2)

IF(LOC1.,EQ.(G) DELOM = STAB2*1.2
IF(DELOM.GT.0.10) DELOM = (.04

LOC1 = LOC1 + 1

GO TO (1+2)¢1T7S

IF(LOCl.EQe1) GO TO 100

LOC2 = LOCe + 1
IF(LOC2.EQe2¢ANDLOC3EQe1l) GO TO 74
GO TO (11,12274),L0C2

OMLGEB = OMEGB + DELOM/2,.0

GO T0O 5

OMEGE = OMEGHB + DELOM/4.O

GO TO S5

IF(LOC2.EQ.U) GO TO 20

LOC3 = LOC3 + 1
IF(LOC2+EQe2+AND.LOC3.EQ.1) GO TO 75
IF(LOCZ2.EQelsAND.LOC3.EQs2) GO TO 75
IF(LOC24EQel+ANDLOC3+EQeLl) 60O TO 21
STOP

OMEGB = OMEGB = DELOM

60 TO0 5

OMEGE = OMEGE = DELOM/4.0

GO TO 5

IF(ABS(DELOM) «LT«0410) GO TO 9U
LUl = 0

DO 84 1Z = 1+4

IF{(DELOM.GT U IOMEGB = OMEGB + 002
IF(DELOM.LT.Ue) OMEGB = OMEGo = .002
CALL STAB(ITSSTABR2)

IF(ITS.EGe2) LOCH = LOCS+]
IF(LOCH.EQel«eANDITS.EQe2) WRITE(Or101)
CONTINUE

GO0 TO 90

IF (ABS(DELOM) «LT+0.10) GO TO 9U

LOCS = 0

DO 85 1IZ = 14

IF(DELOM.GT.0¢) OMEGB = OMEGDL = .002
IF(DELOM.LT.Us) OMEGB = OMEGL + ,002
CALL STAB(ITSSTAB2)

IF(ITS.EQel) LOCS = LOCS + 1
IFILOCS.EQelsANDITSEQel) WRITE(D,101)
CONTINUE

GO TO 90

IF(LOCY.£EQs1) GO TO 100

LOCY = LOCY + ]

DELOM =-DELOM

OMEGEB = FOMLGB
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100
101

LOC2 = 0O

LOC3 = O

G0 T0 2

CONT INUE ,

FORMAT (SXS59HTHERE IS A BOUNDARY POINT BETWEEN THE LAST TwWO OMEGB V
1ALUES)

RETURN
- END

111

2

2l

PROGRAM TO CALCULATE STABILITY CONSTANTS OF A UNIFORM BEAM SuUB=-
JECTEVU TO A PERIODICALLY VARYING THRUST WITH DIRECTIONAL CONTROL
SUBROUTINE STAB(ITS,STABR)

DIMENSION A(7)+ ROOTR(6)r ROOTI(6)

DIMENSION DT(6)sACHE(6) Y{6)eWi6)
DIMENSION R{S)eB(S5)+PH(5) +DPH(S) ¢ DPHG(S)
DIMENSION RMOD1(6) feRMODR2(6)

COMMON ReBePHeDPHI»DPHO

COMMON NePI s XGrSPCeTO»OMEGB) GAMMAIETAP¢Q+S
COMMON OMEGL LV GA

COMPLLEX CZ2CARG1rCARG22CSQRT

INTEGER PeQeS

Nl = N + 1

IF(SPCEQsOsUIN1=N

CALL DETER (DTew)

DO 5 I=Z1eN1 i
ACHE(L) = PLI*SIN(2.*PI*xw(I))*DT(I)/W(I) .
Y(I) = COS(2.%PI*W(l))

CONT INUE

All) = =1, '

AlZ2) = Y(1)+Y(2)+Y(3) -~ ACHE(1)=ACHE(2)=ACHE(3)

ALY T= Y (1 Y (2 Y L1 kY ) +Y (D)%Y (2)=ACHE (1) % (Y (2)Y+Y (3))

1=ACHE(Z2)* (Y (LI+Y(3))=ACHE(3)x(Y(1)+Y(2)}})

Ald) = Y(L)*Y(2)xY(3) = ACHE(1)*Y(2)*Y(3) = ACHE(2)*Y(1)*Y(3) =

1ACHE (3) xY (1) %Y (2)

CALL MULLER (A'ROQTR(ROOTIv3)

DO 111 I=1.,3

IF(ABS(ROOTI(I)) LTeelE-4) RUOTI(I) = 0.0
CZ = CMPLX{RUOTR(I)ROOTI(I)})

CARG1 = CZ + CSQRT(CZ*%2=4,)

CARGZ = CZ = CSQRT(CZ*¥2=1,)

RMOD1(1) = CABS(CARGL)

RMOD2(I) = CABS(CARG2)

RMAX = AMAX1(RMOD1(1)+RMOD1(2)RMOD1(3)+RMOD2(1)+RMOD2(2).
IRMOD2(3))

STAB2 = ALOG(RMAX) *OMEGB/PI

STABL = STAB - ETA

IF(STABL = +1E=6) 1el1r2

ITs = 1

WRiTE(be21) OMEGH

00 TO 3

1T = 2

WRITE(6022) OMEGS
FORMAT(11X6HOMEGB=F64+3¢5X6HSTARBLE)
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22

23
50

11

13

- 12

201

202

200

FORMAT (11 X6HUMEGB=F6+3¢5X8HUNSTARBLE)
WRITE(6023) (ROOTR(I)»I=1+3) (ROOTI(I)»I=1+3)

WRITE(6¢50) STABL

FORMAT (18X5HROO0OTR» 12X 3F10.5/18X5HRO0TI 12Xt 3F10.5)
FORMAT( 18X5HSTABLr12XF10.5)

RE TURN

END

SUBPROGRAM TO EVALUATE AN INFINITE DETERMINANT
SUBROUTINE UETER (DTeW)

DIMENSION R(5)+B(5)PHIS) +DPH(5) »DPHG(5)
DIMENSION A(1000100)eDT(6)F(8¢8)G(8y 8)0H(508 8)
DIMENSION FF(B8+B)eFG(8¢8)¢FH(5,8:8)

DIMENSION W(o)

COMMON ReBsPHIDPH,DPHG

COMMOIN NoPIeXGrSPCeTOrOMEGB» GAMMAYETAIP QS
COMMON OMEGL/LV.GA

COMMON FoGeH

INTEGER PeQeS

SOMEGEB = OMLOB*x*x2

N1=N+]1

IF (SPC.E£EQs0«0) N1 = N

IF (OMEGL+GT+50e04.AND«GAEQsD«0) 0O TO 12

CALL COEF(FFsFGeFH)
TOR4ZTO/R(1) *x4

DO 13 J=1eN1

DO 135 K=1sN]
GIUrK)ZFG{JeKIXTORY
CONTINUE

DO10S 11=1eivl

wWlll) = SGRT(ABS( F
M1l = (SQRT(ABS(F(NeN)
IF{(M1~14) 200,200,201

{11411
1) + SQRTABS(F{Il1,I1))))/0OMEGB + 1.0

WRITE(60202)

FORMAT{SX»35HCONVERGENCE OF UETERMINANT DOUBTFUL)
Ml = 14

CONT IiNUE

MO= 2xM1l+}

L =40

L= L +1

DOLOU M=Z1.MO

DO100 JU=1¢Ni

DO10U K=1oN1

10 = Ml=L+1

£ = 10

DENOM = =(W(ll) = E)*x*x2 + ( F{Jrd) )/ (SOMEGB )
IF(I1eNEe«J) GO TO 4
IF (lO) 49304

DENOM = 1.0

J1Z Je(l=1)xN]

K1z K+{(M=1)=*N1
A(J1,K1) = 0.0
IF(L=-M)10+5010
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10
20
30
50

o4

S5

60
100

105

10
11

12
15

IF{J1=-K1)55,50¢55

IF (JABS{(L=-M)=1) 2060, 20
IF(Q.tQs1) 0O TO 100

DO 33U I=1+5

IF(IABS(L=M) ¢EQsI¥Q@) A(JL1+K1) = S*H(Io»JrK)/ (DENOM®xSOMEGB)
CONTINUE

GO0 TO 100

A{Jlenlliz ]

IF(I1.NE«J) GO TO 100

IF (l1O) 100.54,100

A(J1+K1) = 060

GO 7O 100

A(J1+/K1)Z F(JrK)/ (DENOM*SOMEGB)
GO0 TO 100 ' :
A(J1eK1)Z H*GAMMAX*G(JeK)/ (DENOMXxSOMEGB)
CONT INUE

IF(L.LT«MO) GO TO 2

MO = N1*MO

CALL GASDET(AMOYDET)
DT(I1)=DET

CONTINUE

RETURIN

END

SUBROUTINE COEF (FeGrH)

DIMENSION R(H)eB(5)+PH(S)1DPr(5) s DPHG(5) +A(S)
DIMENSION F(818)+G{808) sH(SrE6¢8)1FJIK(8¢8) 1GJK(8+8) HIUK(5+8:8)
COMMON R+B+PHeDPH2DPHOG

COMMON N'PIsXGrSPCeTOrOMEGBr0AMMAETAPrQrS
COMMON OMEGL«LVIGA

INTEGER SePeG '

COMPLEX CIeZeCGeCCOSYCSINPYCSART

Cl = (0.0r1.0)

NIZSN+1

SIe = OMEGB/UMEGL

CALL INTEG(FJK 1 GUK s HIJK)

SOMEGE = OMLOB**2

X = S16

COMPUTE A ARRAY

DO 1 1I=1.S

SGNI = (=14)%%]

XIz 1
A(LI) = 2.%SONI*(1e0/XI*%2 + GAMMA/Z (XI*%2=X%%2))/Plx%2
X = PL*xSIG

DO 15 J=1/N
DO 15 K=1+¢N

FluiK)= PH(J) *DPH{K) =FUK(JsK)+SPC(PH(J) *DPHG(K)
G(JeK)= PH(J) *DPH(K) =GuK (J 1K)} +SPCxPH(J) *DPHG(K)
DO 12 1I=1.S

Xl= 1

H{LrJeK) = A(I)*(=1.0 )*HIJK(IrJrK)

CONTINUE

DO 20 K=1/N
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20

25

260

27

28

30

S

10

FIN+1/K)Z 12.% { e S*DPHIK ) =PH(K) ++5%SPC*DPHG(K) )

GIN+v1eK)= 124% (e H5*¥DPHIK)=PH(K)+GUK (N+1+K) 4+ .5%xSPCxDPHG(K) )
DO 20 I=1.S

XI= 1

H{IsN+1leK)= ~A(l)%12.% HIJK (I s N+1,¢K)

DO 25 J=1N

F(JeN+1l)= SPCxPH(J)

G(JrN+1)= GJUK{JrN+1)+SPCxPH(J)

DO 25 1=1»S

XI=1l

H{leJeN+1)Z(=1,0 )% A(ID)*HIJK(IsJsN+1)
FIN+1/N+1)= 64%SPC

IF(GA.6GT.0.0) GO TO 27

CONT INUE

GIN+L1eN+1)= 12.% (e5=(10~COS(X))/(X*SIN(X))+.5%SPC)
GO TO 28 '
CONTINUE

Z = PL*CSQRT(S1G*%x2 = CIxGA)

CG = (1.0 = CCOS(Z))/(Z*CSIN(Z))

GUK(N1#/N1) = REAL(CG)

GIN+1irN+1) = 12.%(+5 = REAL(CG) + .5%SPC)
CONT 1 NUE

DO 30 I=1,S

SONI = (=l,)*x]

XI= 1

H{IoN+1eN+1)Z 12.% (SGNI-1e)% A(I)/(PI%XI)
RETURN

END

SUBROUTINE TO EVALUATE INTEGRALS
SUUBROUUTINE INTEG (FUKiGJURK/HIUK)

DIMENSION Ri{D)+B(H) e PHIS)»DPHI(D) ¢ UPHG(H)
DIMENSION FUK(8¢8)rCGUK(B18)rGUK(8¢8) +CHIUK(S5+8+8) e HIUK(S+8+8)
COMMON ReBePHDPHDPHO

COMMOIN NePI i XGeSPCeTOrOMEGB r AMMACYETAIP+QreS
COMMOIN OMEGLLV:0GA

INTEGER PrQeS 4

COMPLEX COUKeCHIJUK?CLrCAPCBeLEXP

COMPLEX CX1eCX2/CX3

SiG = OMEGB/OMEGL

CoMPLEX Z1CGeCCOSICSINICHERT

XZP1*516

Z = PiI*CSQRT(SIG*%2 = CI*GA)

DO 31 JU=1+N

DO 31 K=1N

CGUK(UrK) = (U.000.,0)

DO & 1 = 15

CHIJVUK(IeJrK) = (0.000.,0)

SONZ (=1le)*x(J+K)

IF(K=J}25¢5,10

FUK(JrKIZ (BIJ)I*R(J)I/Z72.0)*%(B(J)*R(J)=6.,0)
GO TO 15

FUK(JrK)Z (4e*SON*R(J)*R(K) /{R(K)*x4=R(J) **4) } x(=B(J)*R(K)**3+B (K)
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1#R(JU)*x3)+( (10, 0%R(J) **4*R(K ) *x%4) / (R(K) **4=R{J) ¥4 ) *%2) % (SGN=1+0)
15 DO 20 L=1+4
DO 20 M=1l.4
Cl=z (UsUrlau)
CAz R{JI*CIx*x(~1) + R(K)*CI*%x(M~]1)
CB= (RIJI*R{K)I/40)*(B(J) + CIxx(L=1))x(B(K) + CIxx(M=]1))
IF(GA.GT«0.0) GO TO 22
21 CONTINUE
COUK(JrK) = COUK(JrK) + (CB/(CA%xx2+X*%x2) ) *x ((CAXSIN(X)=X%COS(X))*
1CEXP(CA) + X)/SIN(X)
GO TO 23
22 CONTINUE
COUK(JrK) = COGUK(JrK) + (CB/Z(CA*x*x2+Z2%x%x2) ) x( (CA*CSIN(Z)=Z*CCOS(Z))*
1CEXP(CA) + Z)/CSIN(Z) .
23 CONTINUE
DO 20 1=1.S
SGNI = (=1.)%%]
Y = PI*FLOAT (L)
CHIUK (I oJrK)ISCHIUK(I v JoK)+(CXY/(CAX%2+Y*%x2) )% (1.0=-SGNI*CEXP(CA))
20 HIUK{loeJdrK) = REAL (CHIUK(I»ueK))
GJK({JrK) = REAL(CGUK{JIK))
GO TO 30
25 FUK({JIK)Z FUK{KeJ)
COGUK(JrK)= COJK(KIJ)
DO 26 1I=1:S
CHIJUK( (1 edrK)}= CHIJK(IrKeJ)
26 HIJUK{(loJerK)= REALICHIJK({IrJeK))
GUK(JrK)= REAL{CGUK(JeK)) ‘
30 IF(SPCEQeDsU) GUKI(JIK) = FUK(JeK) *
31 CONTIRNUE
D035 K=1+N
XK = 10/ (RIK)®%4=X*%x4)
SGNK = (=1,)%%K :
IF(GA.GT.0.U) GO TO 33
32 CONTINUE
GUK({ N+1eK)Z XK®{(X*x%3)%DPH{R) % (SGNK=COS(X) ) =(X#%x4 )} *PH(K)*SIN(X))/
1SIN(X)
GO TO 24
33 CONTINUE
CG = 1 U/Z(R(K)*%Y = Z*x4)
CG =Co*{ (Z%%35)*DPHIK) * (SGNK=LCOS(Z) ) =(Z%*4 ) *PH(K)*CSIN(Z))/CSIN(Z)
GJK (N+1,K) = REAL(CG)
24 CONTINUE : C
DO34 1=1+S
SOGN1 = (=1.,)*x]
Y = PL*¥FLOAT (1)
YK = 1eO0/(R(K)*%y4=Y*%x4)
34 HIJK{L/N+1leK) = YKx(Y*x%3)*DPH(K) *x (SGNI=SGNK)
35 CONTINUE
DO 4U J=1+N
XJd = 1.0/7(R(J)*xky=X*x4)
SGNJ = (=1,)*xJ
IF(GA.GT+0,0) GO TO 37
36 CONTINUE
GUK(JrN+1)= (=XJ)*( (X*%x2)xDPH(J)*SINIX)+ (X*%x3) *PH(J) *(COS(X)+
1SGNJ Y I/SINIX)

A-23




\

60 TO 38
37 CONTIiNUE
CG = 1.0/7(l{J)*xgq = Zxxy)
CoO = ~CO*x(Z+*2*DPH(JI*CSIN(Z}+(Z2**x3)*PH(J)*(CCOS(Z)+SGNJ))I/CSIN(L)
GUK{J/N+1) = REAL(CG)
38 CONTInUE
DU 39 1=1.S
SGNI = (=1e)*x]
Y = PL*FLOAT(I)
YJ = 1.0/7(R{J)*x4=Yxxy)
39 HIJK(IleJdoeN+l)= YJ*(Y**S)#DPH(J)*(SGNI-SGNJ)
40 CONTINUE

RETURN
END
SUBROUTINE GASDET(A'NeDET) ir100
DIMENSION A(100.100)
RETURN .
END , iol01l.
SUBROUTINE MULLER(COE»ROOTR/kOOTI N1} Is1lu0
DIMENSION COc(7)ROOTR(6) rROUTIil0)
RE TURN IF1u0
END IF100
C SUBROUTINE 70 PUT MATRIX IN UPPER HESSENBERG FORM. HES

SUBROUTINE HESSEN(AM) HESSO
DIMENSION A(De5)rB8(4)

30 RETURN HESSO

END HESSO

¢ PROGRAM TO CALL QR TRANSFORMATION. MAXIMUM ITER IS 50. QRCNO

SUBROUTINE QREIG(A+MsROOTRIRUOTL»IPRNT) '
DIMENSION A(S5¢5) +ROOTR(S) +ROUTIIH])

107 FORMAT(56X t£l3.08) QRCND

END QWRCNO
SUBRUUTINE WRT(A'NeR»SIGrD) WRT .0

DIMENSION A(5¢5)sPS1(3),6(3)
101 RETURN
END

2 +U0e5 +1.0 +5.0 +3.141592
4,7300408 -0.9825022 2.0 9.29453
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7.8532040

10.9956078
l4,1371655
17.2787596
+0.0
+1.0
+100.0
+0.0
0.0
+0.,10
+0.0
+0,00
1 1
+20.0
0 0
1 0

-1.0007773
~0.99996645
-1.00000145
~0.99999993
+10.,80006
‘1'0
+100.0
+0.0
+0+5
+0.10
+20.0
+0.00

0
+20.0

1

2

ENU OF LI1ISTING

2.0
2.0
‘200
2.0
+0.0
+1.0
+10.0
+0.01
+0.5
+0.15
+2.0

40,02

+5.0

-15.71858
21.99045

=28.27433
34 .95751
-20.017144
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OMEG
ETA
sPC
GAMMA
TO

GA
CONTR
T0
CUNTR
CONTR



FORMAT (1)

HNATVIRAL : FREGUENCIES

GAMMAS 41Ur NZ2,0MeGLZ100400s ETAZ.N00s SPCT o450y XG= +5¢ GAZ.0NQ

T0

o

1640

18.0

20,0

FPEG(])

«0NnQQnNn
«1066F6
s JUALL]D
e 173364
«1G2402
205617
«213U72
0216275
7213807
« 205875

161271

FREQ(2)

1.6000
LI B VERRVAV;

L]

(o}

n

«GRT8GY

G7021N0

965031

«G54452

«GU4K5TD

« 525491

527310

«92012N0

«914001

«909014
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FREN(3)

2.756538

2.731931

2.707137

2.682152

2.656973

2.631596

2.606020

2.580239

2.554250

2.523051

2.501638



FORMAT (2)

CHARACIFRISYIC VALUFES IN VICINITY OF 2 X FREQ(1)

TO FREQ(1) FRFQ(2) FREQ(3)

2040 «161271 N80 10 2.5016368

GAMMAZ «10¢ “=2,0MeGL=100,0Ny ETAZ. 000, SPC= 4500 XGZ= oS¢ GA=Z,.0N0

OMEGR= ,383  UNSTAulE
RONTR -1.05427 =-469691 - O7445
<XNNTI LOQuNy 00000 00000
STAR]L « 03994 >

CHARACIFRISTIC VALUFS IN VICINITY OF 2 X FRFQG(2)

T0 FREQ (D) FREQ(2) FREQ(3)

c0.0 121271 «9N3014 2.501636

GAMMAZ ¢10s Mz=2,0MEGLZ100.00y ETAZ,N00r SPCT 500 XG= 5B GAZ,0N0

OMEGRZ 1,718 UNSTABLE
‘-{r)ﬁTR e 78454 '.71173 “'1-0000‘4
RONTI] +00uNU «00000 . 00000
STARL 00492

CHARACIFRISTIC VALUFS I't VICINITY OF 2 X FRFEG(3)

T0 FRED(1) FrEQ(2) FREQ(3)

el «191271 «429010 2.5u1638

GAMMAZ +10¢ "1=2,0MEGL=100,00, ETAZ.000¢ SPC= 500 XG= 5S¢ GA=.0N0

OMEGR= 5,103 UNSTALLF
<OOTR «871206 41617 ~1.00014
RONT 1 »00U0ND0 00000 .0000Q
STABL « 02053
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FORMAT (2) (continued)
CHARACTFRISTIC VALUFS It VICINITY OF FREQ(2) + FREA(1)

TO FREG(1) FrREG(2) FREQ(3)

2N.0 «1681271 «YNGo 14 2.501638

GAMMA: 010! N:Z'OMtGLZIOO-OQo ETA:OOOD' SPC: 0500 XGZ .S' GAZ.OnO

OMEGR= 1,100 - UNSTAGLE
RONTR 46111 46111 -4.14765
#0071 -,0880Q s UReua sNOCNY
>TARL » 03404

CHARACIFRISTIC VALUFS IM VICINITY OF FREQ(3) + FREO(1)

TO FREQ (1) FrREG(2) FRER(3)

€0,.0 «191271 5909018 2.501638

GAMMAZ «10s NZ2,0MeGL=]0040Ny ETAZ.000y SPC= 50 XG= 459 GA=,0N0

OMEGR= £,A93 UNSTALLE
RONTR »9019683 «90193 =-.52292
rRONTI ~001166 «U1166 000000'
5TAR]L 023112

CHARACTFRISTIC VALUES IM VICINITY OF FREQ(3) + FREO(2)

T0 FREQ (1) FREQ(2) FREO(3)

0.0 «191271 «909014 2.501638

GAMMAZ 210 MNzZ2,0MeGLZ=100.00r ETAZ.N00r SPC= 500 AG= .59 GA=,0NQ

OMEGR= L.411 STARLL
ROOTR 93034 -, 10222 -.10526
RONTI LU0UN0 00000 0060y
STARY ~-.00000
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~ FORMAT (2) (continued)

CHARACIFRISTIC VALUES Iy VICINITY OF FREQ(2) = FREA(1)

TO FREQ(1) FREa(2) FREN(3)

20.0 «161271 «9NG01L 2.501638

GAMMAZ +10¢ MZ2,0MEGL=100400s ETAZ.N00, SPCZ .50, XB= ,5» GA=.0N0

OMEGR= ,.718 STARLL
ROGTR "03“505 oOQOI.? ".99605
HONTI <00uNo 00000 s 00000
STARY 00uNo

CHARACTFRISTIC VALUFS IM VICINLITY OF FREQ(3) = FREA(1)

70 FREQ(1) FREG(2) FRES(3)

c0.0 «161271 «909014 2501638

GAMMAZ «10s NI2,0MEGLZ100,00¢ ETAZ,NG0s SPCT 5Ny XGZ oS¢ GA=.0N0

OMEGR= 2.310 STARLC
ROATK « 38334 065206 -. 7843y
KONT] 2000600 00000 «0000Q
2TAR1 00ung

CHARACTFRISTIC YALUFS I% VICINITY OF FREQ(3) = FREQG(2)

T0 FREQ(T) FRFQ(2) FREN(3)

0.0 «191271 «$N3014 2.501636

GAMMAZ «10» MzZ2,OMLGL=100.00y ETAZ.N00» SPLZ .50s XG= .59 GAZ.0NQ

OMEGRZ 1,593 UNSTAGLE
«KONTR 72015 -.90256 -.90250
RONT] 00000 -, u0147 «00LU7
STARL 00173
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FORMAT (3)

CHARACIFOISTIC VALUES In VICINITY OF 2 X FRFGQ(1)

TO FREQ(1) FREQ(2)
2N.G «181271 «G03014
GAMMAZ 10, NZ2,0MEGL=1IN0.00» ETA=.N00,

OMEGR= , 283 UNSTABLLE

RONTR -~1.05427

KNOTI 00000

STARYL . 03994

CONVEKGFNCE OF NFTFRMIMANT DUURTFUL

OMEGR= 335 STAR.L

KNOTR -.99u18

KONT1 «00uNO

STARY »00unN0
OMEGR= ,359 UNSTAGLE

RONTR « 98698

KONTI «000Ng

'~)T.‘.F«1 L8607

COMVERGENCF OF DETERMIMANMT DutnTFu,

OMEGR= 347 STAR L

RONTR - 72490

RONT] «00u0g

STARY 200600
OMEGR= 030 STARLE

RKONTK 75722

KONT] 00ungy

STABYL .00unNQ
OMEGRZ L0007 STARL e

RONTR +HHGT3

KONTI «00uN0

oTARY L00uNoD
OMEGR= . 205 UNSTAnLF

rROOTR ~eH3717

RONT] «00UuNQ

2TAR] «U3176

FREG(3)

2.50163¢
SPC= +50, XG= ,5»
-.69691 -e 97445
s00000 +000N0
-.21531 ~,s53393
« 00000 «000N0
-,92604 =1,127148
«00000 «00009
020277 -.96981
«00000 «00CNQ
037538 '095960
«0Nu00 .0000y
-'2628“ -039982
«u0000 «0000u
=e33576 =1.03214
00000 .00000

CHARACTFRISTIC VALUES IN VICINITY OF 2 X FREQ(2)

TO

N0

GAMMA: clOl N:Z-OM&GLleO-OOo ETA:CQOOI SPC: nSO' XG= -5' GA=.O“0

OMEGR=

L.R18
RONTR
KONOTL

FREQ(1)

191271

UNSTAGLE

FREQ(2)

«GNA01G

« 78953
«00uu
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-a71173
L0000

FREQ(3)

2.5016358

-1.00004
«00000

GAZ.0N0



FORﬁAT (3) (continued)

OMEGR=

OMEGR=

AMEGR=

OMEGR=

OMEGRZ

OMEGR=

2TAR1
1.R12
nWNOTR
KONTI
STAR]
ieR15H
WO0TR
RONTI
>TARY
LeR1Y4
RONTK
RONTL
2TAR]
LeR24
RONTR
<AONT]
2TARY
1LeR21
ROOTR
ONT]
STany
L.R22
ROOTR
<ONTI
aTaABL

STAPLE

UMSTACLE

UNSTALLE

STARLL

UNSTALLE

UNSTAGLE

00482

« 78824
+00L0O
L00ufiG

e 78601
LO00uUDQp
.003A5

« 78658
.00ung
L00113

.79091
L00LNg

+U0U00

78024
«00u00
00421

« 76058
LLOUNO
« 00RO

- 73124
00000

-07?15Q
, 00000

-.72640
«00000

-.69178

LR R

'070180
«00000

-.69680
«00000

--99908
.0000Y

-l-UDOﬂ&
, 00000

. 00000

-+.99999
0000y

-1900003
«00000

-1,00001
00000

CHARACIFRISTIC VALUFS IM VICINLTY OF 2 X FREQ(3)

T0

«0.0

GAmMAZ ,10

OMEGR=

OMEGR=

OMEGR=

OMEGR=

OMEGR=

OMEGR=

v MZ2,0MeGLZI100.0N,

2.003
RONTR
Nﬂqu
»TARL
w071
KONTK
RONTI
STAR]
G, Q87
KOOTR
ROOT]
STAR]
KONTR
RONT1
STAR1
D.N35
RONTR
RONTI
bTABl
HLeN19

FPEQ(L)

191271

UNSTAGLE

STARLL

UNSTAGLE

UMSTALLE

STARLL

UNSTABLE

FrREQ(2) FREG(3)
£ SN30 14 2.501638
ETAZ.N00r SPLZ 500 xG= .5

.971%0 41617 -=-1,00614
e UUUND «00U00 +000049
«02u53
«97uUR9 «40951 - 459994
»U0LNO «u0000 « 00000
»00000
« 97107 41285 =1,00009
«00uNQd »U0000 ,0000U
02122
«37u%4 «41119 =-1,00003
LU0UN0 «U0GN0 00000
«Ul1159
L00uL00 «00000 00000
«00UND
A-31

GAz=.0N0



FORMAT (3) (continued)

OMEGRZ

“DATR
X0NT1
STAR]
D027
gKNOTR
RNOTI
>TAR]

UNSTABLE

97144
LU00N0 -

02121
«97153

J00uL00
01152

A-32

41946
«00000

«42109
«0000

-1.00009
+0000u

-1,0006n3
.00000



FORMAT (3) (continued)

CHARACTERISTIC VALUFS IM VICINITY OF FREG(2)

TO

€NeU

GAmMAZ .10

CMEGR=

OMEGA=

OMEGR=

PAME LD -
N N

OMEGR=

OMEGRZ

OMEGRZ=

CHARACTFRISTIC VALUFES IN VICINITY OF

T0

0.0

GAMMAZ .10

OMEGRZ=

OMEGR=

v MZ2,0MeGL=100,00,

i.100
KONTR
RNNTL
STARY
1,059
NOOTR
KOOTI
5TARY
1.NA0
OOTR
nNNTI
S>TAR]Y
LaN70
XOOTR
RONTI
2TAR]

1e141])

KONTR
RONTI
STARY
Le121
KONTR
<ONTI
HTAR]
1.131
ROOTR
]ONT]
S>TARYL

¢ MZ290ONMGLZI0C.00

d'ﬁga
ROOTR
KNOT1
>TaR]
<565

rREQ (1)

«1G12734

UNSTALLE

STARLL

UNSTAGLE

STARL L

UNSTALLE

UNSTaclE

FREG(1)

«191271

UNSTAuLLE

STARL e

FREQ(2)

«4N39014

ETA:.OUO’

490437
-+.07U53
2783

+O1UAG
".OQU&Z
«01leN7

e 53735
LU0UN0
-.Q0uUNO
42092
-. 06775
« 026606
0“0“77

=~ 044K094
01771

FrREa(2)

509014

ETA:OGUO'

«90193
-,01166
s02311

A-33

+ FREAQ(}1)
FREG(3)
2.501638
SPC= 50+ XG= .5¢ GA=,.000
46111 -01“765
.GB640 ,00000
«58000 -, 643U}
«00000 «00000
049437 “040627
«07053 «0000Q
¢51069 -.52802-
0u062 .00000
405382 « 35423
.0NQG00 «00000
H20R2 «.11189
UBT775 00009
40877 « 23669
0849y <0000y
FREGQ(3) + FREG(1l)
FREQ(3)
2.501638
SPC: 0500 XG: 05' GA:QOnO
50193  =,52292
«01166 «00000



FORMAT (3) (continued)

OMEGR=

OMEGRZ=

OMEGR=

OMEGR=

CHEPACTFRISTIC VA

~t e

0.0

GAMMA= L 10

OMECR=

RONTR
"ONTI
STARY
£eA79
RONDTR
rONTI
2TARY
2e5/72
KONTR
RONTI
STAR]
de?21
KOOTR
KONT]
STARY

<e 707

KOOTR
RONATI
STARY
ce 714
xNATR
XNNT1
>TAR)

¢ NZ2,0MLGL=100G.0N

Sl.t1l
RONTR
KONTI
5TAR1

UNSTALLE

UNSTAuLE

STAPLE

UNSTAGLE

DR

rREQ(1)

«191271

STARLL

urg I

«90551
.0000Q
00000

«90775
-000910
01847

«91luSe
-, 00487
01002

«897324
»000u00
«00ULNO

« 89577
«009%6
o 01651

« 89506
.00528
.0lule

VICINITY OF FREQ(X)

FREGQ(2)

909014

ETA:.DGO'

« 92634
000N
-QUOUOD

A-34

2
-

«92058 - .541hK1
. 00000 «00004Q
.9”775 -053225
00910 «000Ng
«91052 ~-.53692
00487 «00000
«8R120 -.50437
.00000 .00000
69577 -e51563
~-,00956 «0000¢
« 86256 -.5N§99
-.u0528 00000
+ FRENO(

FREQ(3)

2.5uU1638
SPC= «80» XG= ,5¢
~.iN222 -,105206
«+ 00000 .0000y

}

GA=.0QNO




FORMAT (3) (continued)

CHARACTRERISTIC VALUFS In VICINITY OF FREG(2) = FREO(1)
T0 FREGQ(1) FREG(2) FREC(3)
\
et 7191271 «$50G014 2.501638

GAMMAz 0100 M=2'0MtGL:1nO-00' ETA:anO' SPC: 050'

X6= 50 GA=,000

CMEGR= .718 STARLL
XOOTR =, 34505 SUS017 -,89605
ROOT] +00uno «+00000 «00000
STABL +U0ULNO
CHARACTFRISTIC VALUES IN VICINITY OF FREG(3) = FREA(1)
T0 FREQ(1) FREG(2) FREQ(3)
€N, 0 161271 «S09014 2.501638

GANMMAZ 10, MzZ2/)0OMEGLZ=IN0.00e ETAZN00» SPC= 500

v

XG= 05' GA:QOnO

OMEGRZ 2,310 STARLE :
ROATR .8837R 65206  =,78430
ﬂnnTI QUOUQO 000000 000000
STARL L00LGG
CHARACTFRISTIC VALUFS It VICINITY OF FRFQ(3) = FREA(2)
To FREQ(T) FREW(2) FREQ(3)
0.0 .19127; .9N9014 2.5016386

GAMMAZ 410, Mz2,O0MEGL=100.0Ny ETAZ,.000, SPC= ,50,

OMEGR= 1,803 UNSTALLE
KOOTR 72015 ~e90256
KONTI LU0uUNo - 00147
5TAR1 .00173

OMEGR= 1,591 STARLE
RONTR . 12747 -, 89841
NOQTI .UOU“U .UOODO
STARY LU0U0D

OMEGRzZ 1,502 UNSTALLE
RONTR 72781 -.90066
KOOTI 00000 -,00135
STAR] +uU0158

OMEGR= 1.591 UNSTACLE

A-35

XG= ,5» GA=,0N0

-OQOZSO
«00147

-,899Ngp
.0000¢G

-.500606
«00135




STOP

FORMAT (3) (continued)

OMEGR=

OMEGR=

OMEGR=

KONTR
KONTI
STARY
15085
KONDT]
S5TARY
1594
ROATR
KONTI
2TAR1
14594
ROOTR
nONT1I
STARY

STARLC

UNSTALLE

STARLL

72764
.00uNnQ
00120

72683
«00unQ
«00u0g

72619
«00u0o
.00115

e 728606

«004r0
L00u00

A-36

-,89970
-.00104

-090497
00000

-, 9NLL3

-.9”582
«00000

"'089970
00104

‘.9”760
000090

-.90443
. 00097

«00000




B-6 Stepped Beam Computer Program

The computer program used in the analysis of a stepped beam is listed
in this appendix. Library subroutines are listed by name with any variable
array dimensions without a complete listing. Prggram input data is listed
at the end of the program with the resuitant output listed immediately

following.

The output formats are listed as format (1), format (2), and format
(3). These formats are obtained in one computer run using the program

source deck and data deck listed.
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PROGRAM DRIVER

DIMENSION F(505)+6(5¢59)RTRID)WRTI(S)+FF(5+5)

DIMENSION R{5)¢B(5)sDOPH(11+5)+DIPH(11+5)+,D2PH(11+5)D3PH(11,5)
COMMON NePI¢XGeSPCeTOr»OMEGBY GAMMAPETA+OMEGL ¢ N1

COMMON RAPRCIRI

COMMON ReBrUOPHsD1PHeD2PH»D3PH

400

4o

c ek ~NoWwm

COMMON F oG
READ(505)
READ(S»06)
READ(be6)

RC ATYL 4w o7y
CARUNGY T

READ(57)
READ(507)
READ(5¢7)
READ (L 8)
READ(S5¢8)
READ(58)
READ(508)
REAU(D98)
READ (90 8)

DL AN . O
N 7S Vb T T

READ(S»10)
FORMAT (IS,
FORMAT(5E1
FORMAT(7EL
FORMAT (SE1
FORMAT (9E
FORMAT (315
00 1 J=1l+¢N
DOPH11,d)
D1PH(11,J)
DePH11lrJ)
D3IPH{11,J)
CONTLNUE
FXG = X6
FOMEGL = O
FRC RC
FRA RA
FRI1 R1
FOMEGL = O
FETA = ETA
FTO = TO
FSPC = SPC
FGAMMA = G
N1l = N+1
1F(SPC.£Q.
N = N1 +
CONT InUE
IF (NAT +EQ.
WRITE (6950

"nan

'RTRYRTI
NePI
(R(L)eIz=1+5)
(B(1)eI=1e5)
(LUCPHIVPK) v UZ1010) +KZ105)
((DIPH(JPK) ¢ J=1+10)sK=1¢5)
((D2PH(JeK) vJz1010) 2K=1,5)
((DSPH(JrK) »JU=1910) +K=1+5)
XGr XOGMAX » DELXG
OMEGL » OLMAX » DELOML
ETAETAMAX»DELETA
SPC+SPCMAX ¢+ DELSPC
GAMMA » GAMAX » DEL.GA
TOr TOMAXDELTO

NI DT NCL M. na
INV PN ITIAlN T

1TR+NAT» ICOUNT
Elc.1)
2¢1)
0.1)
2.0!36X)
6.1)
)

(=1)*%x(J=1)%DOPH(10,J)
(=1le)*x*J*DIPH(lU»J)

U0

U.0

MEGL

MEGB

AMMA

0.0) NI=N
1

U) 60 TO 45
1)

WRITE (6:28)

WRITE(b0r60
WRITE(6e27

} (I.I=1,N1)
) GAMMA/N¢OMEGL ETA,SPCsXGsRCrRASRI
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28

60

70
27

45

12

120

110

130

501

50¢e

200

505

201

FORMAT(////77720X, 29HNATURAL FREQUENCIES///)
FORMAT(15X3HTO +»8X5HFREQ(IL1eiH)»8XSHFREQ(I1r1H) »8XSHFREQ(I1r1H)/)
FORMAT(13X01F541¢3F15¢67/)

FORMAT {8BXOHGAMMAZF442¢4He NZ1l1lv7HsOMEGLZF6.2¢96Hr ETAZF6.3r6H» SPC=
lFGe205Hr XGZF3e10//8Xe4H RC=F{,2+5H) RAZFU4,2¢5Hy RIZF4e2/)
CONT inUE

CALL COEF(F0)

DO 12 v = 1+, N1

DO 12 K = 1¢N1

FF(JeK) = FlJrK)

CALL HESSEN(FeN1)

CALL GREIG(F+sN1+RTRRTI,0)

NIMl = N1 - 1

U0 110 I = ir NiMi

IPlL =1 + 1

DO 110 J = 1P1eN1

IF(RTR(1) = RTR{(J))110¢1100120

TEMP = RTR(1)

RTR(1) = RTR(J)

RTR(J) = TEMP

CONT LiNUE

DO 130 1 = 1Nl

RTROL)ISSQRTABS(RTR(I)))

U0 & v = lrind

DO 2 K = 1oinl

F{JrK) = FF(JsK)

IF(NATWEQel) WRITE(6070) TO» (RTR(I)I=1/N1)
IF(NAT.EG.1) GO TO 300

FORMAT {1H1)

WRITE (6¢501)

DO 20U KZ = 1 NIl

WRITE(6¢502) KZ

FORMAT(//12X+46HCHARACTERISTIC VALUES IN VICINITY OF 2 X FREG(Il,1
iH)/7)

WRITE(H:60) (1sI = 1oN1)

WRITE(6+70) TOW(RTR(I)»IZ1vN1)

OMEGB = 2.0 * RTR(KZ)

WRITE(6:27) GAMMAINOMEGLIETA,SPCrXGerRCeRAWRI
IF{ITK.EQ.0) CALL STAB(ITS,STABR2)

IF{ITR.EQs1) CALL SWITCH(OMEGBDELOM)

CONT INUE

WRITE(6¢501)

DO 2U1 KZ = 1N}

DO 201 JZ = 1 N1

IF(KZEQeJZeORKZ.GTeJZ) GO TO 201

WRITE(6¢503) JZ/KZ

FORMAT(//12x¢42HCHARACTERISTIC VALUES IN VICINITY OF FREG(I1lrlH) S
IH + FREQ(IL/1H)/ZZ)

WRITE(6r60) (LI = 1,N1)

WRITE(6+70) TOP(RTR(I)+IZ1eN1)

OMEGE = RTR(JZ) +RTRI(KZ)

IF{ITR.EQs0) CALL STAB(ITS,STAB2)

IF(ITR.EQe1) CALL SWITCH(OMEOGBDELOM)

CONT INUE

WRITE(6,501)

DO 204 KZ = 1+ N1
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DO 2U4 JZ = 1 N1
IF (KZEQeJZsORKZGTUZ) GO TO 204
WRITE(O9s504) JZv KZ
S04 FORMAT(//12X+42HCHARACTERISTLIC VALUES IN VICINITY OF FREG(I1les1H) 9
1H = FREQ(I1s1H)/Z/)
WRITE(6r060) (11 = 1eND)
WRITE(Oe70) TOW(RTR(I)»IZ1eN1)
OMEGHB = RTR{JZ) = RTR(KZ)
WRITE(0+27) GAMMAYN+OMEGLETA+SPCrXGeRCrRAIRI
IF(ITR.EQe1) CALL SWITCH(OMEGB,DELOM)
IF(ITR.EQe0) CALL STAB(ITS!STABR)
204 CONTINUE
300 CONTINUE

TO = TO + DELTO
IF(TO.LT,(TOMAX+0.001)) 60 TO 45
TO = FTO

RC = RC = DELRC

IF(RC«OGT+ (RCMIN=0,001)) GO TU 46
RC = FRC

KA = KA=DELRA
IF{RAGT(RAMIN=0,001)) GO Tuv 46

RA = FRA

R1 = Rl = DELRI
IF(RLGGT(RIMIN-O,CQ01)) 20 TO &g
R1 = FRI

OMEGL = OMEGL + DELOML
IF (OMEGL LT« (OLMAX+0.001)2G0 TO 45
OMEGL = FOMEOL
ETA = ETA + DELETA
LF(ETA.LT.(ETAMAX+0.001))60 70 46
ETA = FETA
SPC = SPC + DELSPC
IF(SPCLT. (SPCMAX+0.,001))60 TO 4o
SPC = FSPC
GAMMA = GAMMA + DELGA
I1F{GAMMA LT+ (GAMAX +0.,001))GU TO 45
GAMMA = FGAMMA
XG = X0 + DelLX6
IF(XoLTe (XGMAX+0.001)) GO TU 4o
X6 = FXG
IF{ICOUNT.EQ.2) STOP
IF(ICOUNT +EuGel) GO TO 401
READ IN ANY CHANGE OF PARAMETERS HERE
READ(5+8) TO»TOMAX.DELTO
READ(5+,10) ITRoNAT»ICOUNT
60 TO 400

401 CONTI1INUE
READ(5¢10) ITReNAT,ICOUNT
60 TO 400
STOP
END

SUBROUTINE SWITCH(OMEGB.DELOM)
FOMEGS = OMEGB
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11

12

cu
21

74

84

75

85

9y

100

LOC4 = ¢
LOCYL = O
LOoC2 = 0
LOC3 = 0O
CONTIiNUE

CALL STAB(ITS.STAB2)

IF(LOCL1.EGQs0U) DELOM = STAB2*i.2
IF{DELOM.GT.U010) DELOM = 0,04

LO0C1 = LOC1 + 1

G0 TO (1+2)17S

IF(LOCl.EQel) GO TO 100

LOC2 = LOC2 + 1
IF{LOC2.EQe2+AND.LOC3+EQel) GO TO 74
GO TO {(11712:74):L0C2

OMEGB OMEGB + DELOM/2,0

G0 TO
oMEGB
GO 70 5

IF(LOC2.EQ.u) GO TO 20

LOC3 = LOC3 + 1
IF(LOC2.EQe2¢AND,LOC3.EQs1) GO TO 75
IF{LUC2.EQel+ANDLOC3EQe2) ©O TO 75
IF(LOC2.EQeLl+AND.LOC3.EQel) 6O TO 21
STOR

OMEGEB = OMEGB = DELOM

G0 T0 5

OMEGH = OMEGDL = DELOM/4.0

G0 TO 5

IF (ABS(DELOM) LT.0.10) GO TO 90

LOCS = §

DO 84 1IZ = 1+4

IF(DELOM.GT U+ )OMEGB = OMEGB + ,002
IF(UELOM LT Ue) OMEGB = OMEGY = ,QU2
CALL STAB(ITS,STABR)

IF(ITS.EQ.2) LOCS = LOCH+1
IF(LOCS.EQel1+AND.ITSEQ.2) WKRITE(6+101)
CONTINUE

60 YO 90

IFCABS(DELOM) oLTW0610) GO TO 9U

LOCS = 0

DO 85 14 = 1+4

IF(DELOM.GTeUs) OMEGB = OMEGu = .002
IF(DELOM.LT.0.) OMEGB = OMEGL + L0002
CALL STAB(ITS,STABR2)

IF(ITSWEQ.1) LOCS = LOCS + 1
IF(LOCS.EQelsAND,ITS.EQW1) WRITE(Hr101)
CONTINUE

GO TO 90

IF(LOL4.EQsl) GO TO 100

LOC4 = LOCY + 1

DELOM ==DELOM

OMEGB = FOMEoLB

LOoC2 0

LOC3 0
GO TO 2
CONTINUE

o 4

OMEGH + DELOM/4.,0
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101

10
20
o0

FORMAT {5XS59HTHERE IS A BOUNDARY POINT BETWEEN THE LAST TWO OMEGH V
1ALUES)

RETURN
£l

SUSPROGRAM TO EVALUATE AN INFINITE DETERMINANT

SUBROUTINE UETER (DT.W)

DIMENSION R{5)B(5)DOPH(11+5)+D1PH(11+5),D2PH(11+5)D3PH(11,5)
DIMENSION AC1lU0,100)+sDT7(5)eF{5:5)16(5¢5)W(5)

COMMON NePIsXGeSPCrTOrOMEGBGAMMAPETAOMEGL e N1

COMMONN RAPRCeRI

COMMOIN ReBrDUOPHyD1IPHI,D2PHYD3IPH

COMMOIN FrGsRTRIRTI

SOMEGB = OMEGB*%2

CALL COEF(F+0G)

DO105 I1=1,N1

will) = SQRT(ABS( F(Il.11) )}/ (OMEGB )

Ml = (SQRT(ABS(F(NesN)I)) + SART(ABS(F(I1,11))))/0MEGB + 1.0
IF(ML = 14) 200,200:201

WRITE(60202)

TNt AT ILY . TLUCANVUCDLOANCE AT OWCTOOUMTAAMT NAHIMTEINE
NN 3 Y NN T N TS VIt Y Al VW) Y w3 ol o bl NETPATOIVIN NN ? VS T em T
M1l = 14

CONTINUE

MO= 2*M1+1

L =40

L=t +1

DO10OU M=1/MO
DO10U J=1sN1
UDO10U K=1#Ni

10 = Ml=L+}
E = lu
DENOM = =(W(ll) = E)*xx2 + | Flded) )/ {SOMEGB )

IF(IleNELJ) GO TO &

IF (10) 4¢3¢4

DENOM = 1.0

J1Z JU+l=1) %N}

K1Z K+ (M=1)x%N1

A(JleKl) = U0
IF(L=M)10:,5,10
IF(J1=-K1)55+50,55

IF (1ABS{L=-M)=1) 20,60, 20
GO0 TO 100

AlJlesK1)= 1 '
IF(IL.NE.J) GO TO 100

IF (10) 100,540,100
AlJUlsRK1) T 0.0

GO 7O 100

A(JL1+K1IZT FUrK)/(DENOM¥SOMELB)
G0 TO 100

A(JUL2K1)Z JS5S*GAMMAXG(J K}/ (DENOM*SOMEGE)
GO TO 100

CONTINUE

IF(LsLT.MO) 6O TO 2
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105

i5

20

25

MO = iN1*MQ

- CALL GASDET(A/MOsDET)

OT(I1)=DET
CONT INUE
RETURN

END

SUBROUTINE COEF(F.G)

DIMENSION F(5¢5)+16{(5¢5)/RTR(5) +/RTI(S5)1A(6+6)9C(5+5)¢D(55)
DIMENSION R(9)+B(S) 1DOPH(L1+5)eD1PH(11¢5)+D2PH(11+5) D3PH(11+5)
UIMENSIONTOUCLISS) 1 T22CLI5¢5)+P111(5¢5)¢P211(5,5)+P11(5}sP21(5S)"
COMMON NePI¢XGeSPCrTO+OMEGB)GAMMAIETA»OMEGL #N1 '
COMMON RAJRCRI

COMMON ReBeDOPHID1PH»D2PHD3PH

COMMON F1GeRTR*RTI

REAL ™R

MR = KA + (l«=RA)x{1.,~RC)

LC = (10+%RC) + .5

IF(RC.LT.0.01) LC = 11

IG = (1l0.%XG) +.5

IF(XG. LT, 0.01) I6 = 11
LG = 106
Ne = N1 + 1

CALL INTEG (TOOCL,T22CL/IP111¢P211+/P11+P21,P1/P2)

TOR4 = TO/R(1)*%4

DO 15 J=1sN

DO 15 K=1sN

AlJerK) = (1.=RA)*TUOCL(JrK)

IF(JsEQeK) A(JrK) = A(JIK) + RA

ClJrK) = ((UUPHCL100J)*DIPH(L1UIK) + SPC*DOPH(10+J)*D1IPH(LG!K) ) *R(K)
= Pll1(JsK))I*TORG + (1. = RiII*T22CLI(JIK)/R(1) %%4

IF(JeQeK) ClUrK) = CUUIK) + (RI*X(R(JI/R(1))%x%y4)

DIJrK) =((DUOPH(10,J)*D1IPH(10¢K) + SPC*DOPH(10,J)*D1PH(LGIK) ) %*R(K)~=

P21ll1(JerK)) * TORY

CONTINUE

DO 20 K=1¢N

A(N+10K) = =(1le=RA)*(RC*R(K)*xD3PH(LCeK) = D2PH(LC K))/R(K)%x%x2
AlN$2+K) = =(1.=RA)I*DIPHILCIn)/R(K)

CIN+1eKIZ((DIPH(10+K) + SPC*UIPH(IGIK))I*R(K) = P11(K)) * TOR4

ClN+2+/K) Z((DIPH(10,K) + SPC*DIPH(LGsK))%*R(K)) * TORG

D{N+1+K) Z((DIPH({10¢K) + SPCxDIPH{IGIK))*R(K) = P21(K))%*TORG
DIN+2eK) = CIN+2¢K)

CONTINUE

DO 25 J=1N

ACJeN+1) = =(1e=RAI*(RC*RIJ)XDIPH(LCrJ) = D2PHILCeJ))/R(J) %x%x2
ACJrNT2) = =(1.=RA)I*DIPHILCrU)/R(J)

ClUsN+1) = (DOPH(10,J)*(1.0+5PC) = P11(J))* TOR4

CIJIN+2) = 0.0 '

D(OJeN+1) = (LOPH(10¢J)*(1.,045PC) = P21(J))*TORY

D(JeNt2) = (a0

CONTINUE

AIN+L1/N+1) = (RA +(1le=RA)*¥(1.=RC*x%*3))/3,0
AIN+LIN+2) = o5% (RA+(1.=RA)*(1,~RC*%2))
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-

(SN &

Clin+lsN+1) (l.0 + SPC =~ P1) * TORY4

CIN+1eN+2) V.0

DIN+1/N+1) (1.0 + SPC = P2) * TORY
DIN+1eN+2) 0.0

A(iNt+2eNT1) A(N+1eN+2)

(AR I Y P T T T I 7

CIN+2/N+1) (1.0 + SPC) * TORY
DIN+2¢N+1) CIN+2/N+1)
AIN+2N+2) MR

CIN+2/N+2) 0.0

DUN+t2/N+2) 0.0

N2 = N+2

CALL GASINV (A/N2»DET)
IF (DET) 35.30+35

WRITE (6431

FORMAT(1H +»20HMATRIX A IS SINGULAR)
STOP

DO 41 I=1.Ng

DO 41 K=1/N2

FULIeK) = 0o0U

G(leK) = 0ouU

DO 40 J=1rN2

FULeK) = A(Llod) *x ClUIK) + F(IWK)
GlleK) = A(Lo)*D(JIK) + G(LsK)
CONTINUE

IF(letQeK) FULoK) = FUIsK) = (ETA%%2)/4,
CONTINUE

RETURN

END

SUBROUTINE 10 EVALUATE INTEGRALS

SUBSROUTINE INTEG (TOOCL »T22CLP111,P211,P11,P21,P1,P2)
DIMENSION R(5),B(5)sDUOPH(L11+5) rDIPH(11+,5),D2PH(11+¢5)D3PH(11,5)
DIMENSION Pli(5)sP21(5)sPl11(5+¢5)¢P211(5,5)

DIMENSION TOUCL(5:5),T22CL(5+5)

COMMON NrPIsXGeSPCeTOrOMEGB» GAMMAYETA»OMEGL #N1

COMMUN RA/RCeRI

COMMON ReBeDUPHIDIPHD2PHID3FH

REAL MR

MR = RA + (l+=RA)*(1.-RC)

COMPLEX CI»CArCBsCYOL CYCLI,CSUMIRD

CI - (U.le-U)

LC = (10.*%RC) + .5

IF(RC.LTW0601) LC = 11

Pl S +5%¥(RA + (1.=RA}*(1.~-RC)I*%2) /MR

IF (OMeGL«GT.504.0) GO TO 1

S16 = OMEGB/OMEGL

X = PI*SIG

BE = 1e/(COS(X*¥RC)I*SIN(X*(1,=RC)) + RAXSIN(X*RC)*COS(X*(1.=RC)))
BC = (1.,~RA)*BE*COS(X*RC)

BD = (1le=(1,~RA)*BEXCOS{X%RC)*SIN(X*(1+=RC))I/SIN(X)

P2 = (BO*(=CO0S(X)+1,0) + BC*x(=COS(X*(1.=RC))}+1.0))/X

IF (OMEGL+GT450.0) P2 = Pl
DO 11 J=1.N
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10

11

41

42

20

21

22

o
o

P11(J) = (RA*DOPH(10+J) + (1e=RA)*((1.=-RCI*DOPH(100sJ) + D3IPH(LC»J)
1/R(J) 1)) /MR :

IF (OMEGLGT450.0) GO TO 2

CYUL :(U'O'U!U)

CYCL =(0e0¢Ue0)

DO 1uU L=1.4

CA = REJV)I*Claxx(L~]1)

CB = BlJ) + Clx*x(L-1)

RD = CA*%*2 + Xx%2 '

CYOL = CYOL + CB*(CSUM(1.0+XsCA2140)=CSUM(0.0¢XsCA»0.0)) /RD

CYCL = CYCL + CB*(CSUM((l.—RC)erCAvloU)-CSUM((OoO)vaCAoRC))/RD
P21{J) = (BU*REAL(CYOL) + BC*REAL(CYCL))*R(J) /2,0 ‘
IF(OMEGLGT.50.0) P21(J) = P1l1(J)

CONT InuUE

DO 22 J=1+N

DO 22 K=1sN

IF(JsQeK) GO TO 41

TOOCL(JrK) Z=(DOPHILC K)I*DIPH(LCrJ)*R(J) *%3 = DOPHI(LC»J) *D3IPH(LL K
1)*R(K)*%3 « DIPH{LC/K)*D2PH(LCoJ)*R(K)I*R({J)%%2 + DIPH(LCrdJ)*D2PH

2LC K *RIJI*RRIK) *%2) / (R(J) % *4=R(K) *%*4)

T22CLIJrK) Z=(RIJ)I*R(K) )*¥%x2% (DIPH(LC o J) *D2PH(LC,K) %R (J) %*3 = D1Pr(
1LC K)*D2PH(LC o J) *R(K) *%3 = OUPH(LC »J) *D3PH(LC oK) *R(K) *R(J) *x%2 +

2DOPH(LC 1K) xDSPHILCrJ) ¥R (J) *R(K) %%x2) / (R{J) *¥%4 = R(K)**4)

GO TO 42
TOUCL(Jrd) = 25 (DOPH(10sJ) %#%x2) = ¢25% (3. 0%¥DOPH(LC»J) *DIPH(LCru)/
IR{J) + ROXDUPH(LCrJ) *%2 =2,0%RC*DIPH(LC»J)*D3PH(LCrJd) = DIPH(LC,J

21%02PH{LC J)/R(IJ) + RC*DZPH(LCrJ) *%2)

T22CLIJrJ)=(=(3,0%D2PH(LCrJ) *DIPH(LCrJ) + RC*R(J)*D2PH(LCrJ) *%2 =
12.0%RC*R(J)*DIPH(LCoJ) *D3PH(LCrJ) = DOPH(LC»J)*D3PH(LCeJ) + RC*

SRUEJI*DOPHILC U *%2) + R(J)I*DUPH(L10sJ) *%2) %4 25%R (J) **3

CONT liNnUE
IF(OMEGL.GT+50.0) GO TO 3
CYUL = (0.0,0,0)

CYCL = ( 0.0r0.0)

00 20 L=1.4

DO 20 Mz=1.4

CB = (BOJ)+CL*%(L=1))*(B(K)+LI%x%x(M=1))
CA = RUOJI*CI*%(Lel)+R(K)*CIk%(M=]1)
RDU = CAx%2 + X¥%x2

CYUL = CYOL + CB=* (CSUM(1.UrXsCArLe)=CSUM(0.0sXrCAr0.))/RD
CYCL = CYCL + CB*(CSUM((1.=RC)sXsCAs14)=CSUM(0.0sXrCA+RC))/RD
P211{JrK)IZ «25%R(J)*R(K)*(BU*REAL (CYOL)+BC*REAL(CYCL))

CONT IINUE

IF(J.£Q.K) GO TO 21

Pll1(JeK) ZAXUK(L10sJrK) = RAXXJK(11rJrK) = (1.=-RA)*XJK(LCrJrK)

1=RC*(1+=RA)*CUK(10sJrK) + RC*¥(1,~RA)*CUK(LCrJrK))/MR

IF (OMEGLGT.5040) P211(JrK) = P111(JeK)

GO TO 22

CONTINUE

P1l1l1(Jdrd) = (XJJ(10rUrK) = RA*XJJI(11rJrK) = (1.=RA)I%RXJJ(LCrJrK)

1=RC*(1e=RA)*CUJ(100JrK) + RCXx(1,-RA)*CJIJ(LCrJrK))/MR N

IF(OMEGLGT45040) PR11(UIK) = P1l11(JeK)
CONT IINVE

RETURN

END
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FUNCTION XJduflerJeK)

DIMENSION R(5)B(5)DOPH(11¢5)sD1IPH(11+5),D2PH(11+5)+03PH(11,5)
COMMOIv NePL o XGeSPCH»TOOMEGBrGAMMAYETAYOMEGL # N1

COMMON RA#RCeRI |

COMMON ReBrDOPH D1IPHeD2PH,D3PH

XL = L

XL =XL/10,

IF{L+tQe¢ell) XL= 0.0

XJdJ = «125% (0o *XLAxDOPH(L v I} *ULPH(L»J)*R(J) +(DIPH(L s J)*R(J) *XL ) x%2
1= ZoU*DOPH(LOJ)*DZPH(Lod)*(XL*R(J))**Z“Zo*DZPH(Lvd)*DSPH(L J) e Xi*x

2RUV) +{0IPHIL/ ) XLERIUI 1 %%2 = 3F,0%D0PHILJ)*¥2 4+ D2PH{LJ) *%2)

RETURN
END

FUNCTION CJulledrK)

DIMENSION R(S)+B(S)eDOPH(11+5) ¢D1PH{11+¢5)D2PH(11+5)+D3PH(11,5)
COMMON NePIoXGeSPCrTO»OMEGB ) GAMMAETAOMEGL # N1

COMMON RASRUCR]

COMMON R+BrDUPHsD1IPHD2PHD3PH

AL = L

IF(L.£Q.11) XL= 0,0

CUU Z.25*%(3.U%DOPH(LeJ)*DIPH(L ) *R(J) + XLX(DIPH(LsJ)*R(J) ) %%2
1=2 ¥ XLADOPH{L e J) *D2PHIL ¢ ) xR (J) x%x2= D2PH(L o J) xDIPH(L s J) *R(J) +

SXL*(DIPHIL J)*R(J) )} %%2)

END

FUNCTION CSUM(YrXsCArZ)

DIMENSION R(H)eB(S)DOPHIL11+,5)+D1IPH(11+¢5)+D2PH(11¢5)D3PH{11,5)
COMMON NrPI s XGerSPCeTOrOMEGB o AMMAPETA»OMEGL ¢ N1

COMMOIN RA(RCrIRI

COMMON ReBeDUPHeDIPH D2PH)D3IPH

COMPLEX CAr» CSUMCEXP

CSUMzZ CEXP(Z*CA) * {CAXSINIX*Y ) =X*xCOS(X*Y))

RE TURN

END

FUNCTION XJdnllLrJdrK)

DIMENSION R(5)eB(5)sDOPH(11e5)»D1PH(11¢5)+D2PH(11+5)D3PH(11,5)
COMMON NePIoXGrSPCerTOPOMEGBGAMMAPETA»OMEGL # N1

COMMON RAIYRCrRI

COMMON ReBrOOPHD1IPH D2PHID3PH

XL = o

XL =XL/10.
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IF(L.cGell) XLz 0.0

RD = R{J)*x4 = R(K)**4

XIK1Z (XL*(DUPHIL U *¥DIPH(L rK)*R(K)*R(J) % %4 = DOPH(L¢K)*DIPH(Lru) *
IR{J)*R(K) %%y = OD2PH(L e K)*¥D3PH (L J) *R(K) *%2%R (J) %3 + D2PH(L,»J) %
2DIPH(L 1K) *R({JI**2%R(K) *%3)) /RD

XJK2 = -(DIPH(L'K)*D3PH(L'J)*R(K)*R(J)**S*(R(d)**4+3.0*R(K)**4) +
lDlPH(L:J)*DjPH(L'K)*R(d)*R(K)**3*(3.0*R(d)**4+R(K)**4) = 2.0%D2PH(

ZL:K)*UZPH(L'JJ*(R(J)*R(K))**d*(R(J)**Q*R(K)**Q)-“.*DOPH(LvJ)*DOPH(
SLeK)* (RIJ)I*RIK) ) *%4) /RD*%2

XJK = XJK1 + XJK2
RE TURN
eND

FUNCTION CUK(LsJrK)

DIMENSION R(b)oB(b)vDUPH(llvb)oDlPH(ll'S)vDapH(IIOS)'DBPH(IIOS)
COMMOIN NePLyXGrSPCrTOrOMEGB ) VAMMAYETA»OMEGL » N1
COMMUN RA/RCeRI

COMMON ReBrUOPHIDLIPHID2PH»D3IPH
CUK = (DOPH(L»J) *DIPH(L ¢sK)*R(K) %R (J) %%4 = DOPH(L»K)*DIPH(L»J)*xR(J)
C1*R(K)**x4 - UEPHILK) *D3PH(L 1 J) ¥R (K ) *%2%R (J) **3 + D2PH(L »J) *D3PHI(L»
CRIMRIL) %22k R (K ) *%3) / (R(J)x%4=R (K} **4)

RE TURN

END

PROGRAM TO CALCULATE STABILITY CONSTANTS OF A UNIFORM BEAM Sug-
JECTEL TO A PERIODICALLY VARYING THRUST WITH DIRECTIONAL CONTROL
SUSRUUTINE STAB(ITSe STAH2)

DIMENSION A(7)¢ ROOTR(6)r ROUTI(6)

DIMENSION OT(o) e ACHE (6 )+ Y{(b)sW(D)

DIMENSION RMOUL1(86) +RMOD2(6)

COMMUN NePI+sXGrSPCeTOrOMEGH» GAMMAETA»OMEGL ¢ N1

COMMON RA(RC/RI

COMPLEX CZ+CARGL+CARG2+yCSQRT

CALL UETER (DTeW)

DO 5 I=1,N1

ACHE (L) = PLI*SIN(2.*PI*xW(I))xDT(I1)/W(I)

Y(1) = COS(zc.*PI*w(l))

CONTINUE

A(l) = =1,

Al2) = Y(1)+Y(2)+Y(3) = ACHE(1)=ACHE(2)=ACHE(3)
A(3):-(Y(l)*Y(2)+Y(l)*Y(3)*Y(2)*Y(3)-ACHE(1)*(Y(2)+Y(3))
1=ACHE(2)*(Y(1)+Y(3))=ACHE(3)*x(Y(1)+Y(2)))

ACG) = Y(L)*Y(2)%Y(3) = ACHE(1)*Y(2)*Y(3) - ACHE(2) %xY(1)%Y(3) =
TACHE(3)*Y (1) %Y (2)

CALL MULLER (AYROOTR»ROOTI¢3)

DO 111 I=1+3

IF (ABS(ROOTI(I)) JLTeslE~4) RUOTI(I) = 0,0

CZ = CMPLX(KOOTR(1),ROOTI(1))

CARGL = CZ +CSORT(CZ*x2 = 1,)
CARGR = CZ = (CSQRT(CZ*%x2 -~ 1,)
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111

21
o

cc

23
S0

30

107

RMODLI(I) = CABS(CARGL)
RMOD2(I) = CABS(CARG2)
RMAX = AMAX1{(RMOD1(1)+RMOD1(2)sRMOD1(3)+RMOD2(1)+RMOD2(2)

1RMOD2(3))

STABz = ALOG(RMAX)*OMEGB/PI

STAB1 = STABZ - ETA

1F(STABL = L1E=6) 1r1e2

176 = 1

WRiTeE(6e21) OMEGH

GO0 10 3

ITs = 2

WRITE(6022) OMEGSB
FORMAT(11X6HOMEGB=F6.+.3¢5X6HSTABLE )

ocra

[l a VB IV A I RV AL Y Ll nl e D ) 2 R YR YT IRTY IS B =
FORMATU11X0HAUMEGBSF6e 3¢ 5X8HUNSTABLE)

WRITE(©r23) (ROOTR(IDeI=1+3) e (ROOTI(I)Iz=1:¢3)
WRITE(6+50) STABL
FORMAT(18XSHROOTR»12Xr3F10.5/18X5HRO0OTI, 12X+3F10.5)
FORMAT( 18X5HSTABLr12XF10,.5)

RE TURIN

END

SUROUTINE GASDET(ASNDET)

DIMENSION AC100-100)

RE TURIN

£EnD

SUBROUTINE MULLER(COE+RCOTRYyxOUTI/N1)
DIMENSION Cot(7)+,ROOTR(6)ROUTL(B)
RETURN

END

SUBROUTINE GASINV(A/NSDET)
DIMENSION Al(oe6) e JORD(6)
RE TURN

END

SUBRUUTINE TOU PUT MATRIX IN UPPER HESSENBERG FORM,
SUBROUTINE HESSEN(AM)

DIMENSION A(5¢5)¢8(4)

RE TURIN

END

PROGRAM Ty CALL QR TRANSFORMATION» MAXIMUM ITER IS 50.
SUBROUTINE GREIG(A»M+ROOTR/RUOTI» IPRNT)
DIMENSION A(5,5)+ROOTR(5) rROUTIL(S)
FORMAT (56X E£13.8)
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1F1u0
IF1u0

160u0

1G0u0

heS
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neSS0
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2

EiND

SUBROUTINE GRT{(AeNeReSIGD)
DIMENSION A(5¢5)ePSI(3)06(3)

L0l

RETURN

END

C

DATA

2 +3.141592

o > WataY

T, 7TO004UB

-0.9825022 =1.0007773
+1.U7433 40,1954 =~0.54401
+L.19545 +1,07433 +2.00000
+0. 00000 +U.9660n +1,32402
-1 028572 ’U979387 +0065569
~0.10393 +2.00000 =0.58802
~1,40010 =uU.45136 +1.20092
1395061 +0.22220 =1.41386
+2,00000

=1.95383 =1.7481ls =1,34074
+1.76814 +1.93383 +1,96500
+1.37532 +U.94825 =0.09872
=~0+33199 +1,10762 +1,.,24912
+1.067735 +1.,99995 =-1.,38736
~Ue22894 +1.33050 +0.58286
+U. 43141 '1069777 +0000000.
+2.00000

+0.18910 +U,01939 +1.09600
+0.61939 +U,L1891U +0.00000
+0L.U0GU0  ~1.03457 <=1.50550
Ti.,5U782 +Uu.86864 =0.62837
TU77005 +0U.0000U0 +1.07449
+1.,59351 +U.42268 =~1.31923
=1.55938 =U.22021 +1.41457
+0.00000
+0.72655 +1.,02342 +0.93338
=-i.0d342 =u.720655 +0.00000
=1.45420 =1,05271 -=0.09916
+U.11050 «1.18057 =1,27099
=-1l,01202 +yU.0000U0 +0.90088
+0,21753 «1.35944 =0,70122
"G.4H262 +1 59584 +0.00000
+0.00000
+ .50 t+50 +.1
+3200.0 +100.0 +100,0
+0L U0 +U.00 +0.01
1l +1.0 +0.1
.10 +0,10 +0.05
TUL.U0 +20.0 +2.0
tU.00 +0.6U0 +0.60 +0,60

1 0

+2leU +20.0 +5.0

+7.8552046

-1.04050
+0.45486
+0.79450
+1l.4c238
-1.20092
+0.548802
+0.22226

-G'?JOU7v
“108?176
=1.21002
+0.00000
+0.56286
=1.30736
+1.39777

+1.45545
+0.,405573
=1.2U674
-1.40U600
+1.31923
-1007“49
-0.,22021

+0.54723
+0.90776
+0.,79030
+0.00000
'007U122
+0.90080
-1.39584
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=1.21565
-0.79“50
“0.“5486
+0.65569
+0.45136
-2.00000
+1.35061

+0.30000
-1.21002
=-1.87176
~1l.24912
+1.33056
-2.00000
~0.,43141

+1.58815
+1.20074
‘0045573
~0.62837
~0.42208
+0.00000
'1033938

+0.00000
+0,79030
+0.95776
+1,27099
=1.35944
+0.00000
+0.44202

+1i0.9956076 +14.1371655 +17.2787556

=0.999G6645 ~1.00000145 =0,99999994

=-1.04050 =0.54401
=1.32402 =0.,96605
-2,00000 =0.10393
-0,79387 =1.28572
+1.40010 +0.00000
-0.96646 =0.61048
=0.61048 <=0.966406
+(3.73007 +1,3L074
-0.09872 +0.94823
-2,00155 “1067795
=-1.10762 +0.33199
~0.22494 =1.415192
-1.00891 +1,22851
-1.22851 +1.00891
+1.45545 +1.09600
+1.50550 +1.,03457
+0.00000 +0.77005
+0.86864 +1.,50782
-1039351 +0000000
+1.32178 +0.67360
+0.67360 +1.3217&
-0.54723 -0.93338
~0.09916 -1,05271
+0.,00000 +1,01202
+1.,18057 <=-0,11050
+0.21753 +1.41251
+0,65359 =1.29164
+1.29164 -0065359

+0,60 +0.6U +0.60 +0.60 +0.60

RC

wRCHO

WRT O

R{ID
B(I)

AG .
OMEGL
ETA

seC
GAMMA
TO
KA RI
CONTR
T0



am s

\

0 1
0 2
ENDU OF LISTING
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FORMAT (1)

NATURAL FREQUENCIES

T0 " FREQ(1) FREQ(2) FREQ(3)

GAMMAZ .10v'N:200MEGL=100.000 ETA= .000, SPC=1,00, XG= .S

RC= +6N¢ RAZ ,60r RI= ,60

«0

2.0

4.0

6.0

8.0

10.0

i2.0

14.0

16.0

18.0

« 000086

162000

«222785

263711

«292027

«310043

« 318480

e 317333

306115

«283750

« 247899
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« 973546

« 957970

«GU3613

«$30871

920191

«912042

«906861

«904976

«906547

«911535

2919723

o

2.778828
2.742831
2.706368
2.669“29
2.631964
2.593976
2.555432
2.516302
2.476554
2.436153

2.395058



i
\

FORMAT (2)

CHARACTFRISTIC VALUES IN VICINITY OF 2 X FREGQ(1)

TO ' FREQ(1) FREQ(2) FREQ(3)

2040 «247899 0919723 2.395058

GAMMAZ ¢10s Nz=2,0MEGL=100.000 ETAT .000y SPC=1.,00s XG= .5

RC= +60¢ RA= ,A0¢ RI= ,6U

OMEGR= L4496 UNSTAGLE o
RONDTR 63676 J48731 ~1,03409
RONTI 000600 00000 00000
STAR1 04109

CHARACTERISTIC VALUES INM VICINITY OF 2 X FREQ(2)

s

TO FREQ(1) FREG(2) FREO(3)

20.0 « 247899 2919723 2.395058

GAMMA= 410+ MZ2,0MEGL=100.,00s ETAS .000, SPC=1.,00s XG= 5

RC= +600 A= ,AR0¢ RIZ= ,6U

OMEGR= 1.R39 UNSTALLE
ROOTR : «66108 -.32187 =1,00010
ROOTI .00600 «00000 .00000
5TaR1 «00s24

CHARACTERISTIC VALUES IN VICINITY OF 2 X FREQ(3)

T0 FREQ(1) FRFEQ(2) FREQ(3)
20.0 «247899 «G19723 2.395058

GAMMAZ 410+ Nz=2,0MEGL=100.00. ETAS ,000, SPC=1,00s X6= .5

RC= +60» RA= «HB0r PI= eHU

OMEGR= 4,790 UNSTAbLE
ROOTI «00000 +00000 00000
STAB1 + 0L 145
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Li

 FORMAT (2) (continued)

CHARACTERISTIC VALUES IN VICINITY OF FREG(2) + FREQG(1)

T0

0.0

OMEGR= 1.168
. ROOTR
ROOTI

STARL

CHARACTERISTIC VALUES IN VICINITY OF

TO

20.0

OMEGB= 2,643
RONTR
RONTI
STAR1

CHARACTERISTIC VALUFS IN VICINITY OF

20.0

OMEGB= 5,315
KOOTR
ROOTI
STAR1

FREG(1)
247899
UNSTABLE
94592
00000

«04753

FREQ(1)
.247899
UNSTABLE
83091
bl 01520
.02297

FREQ(1) FREGQ(2)
.247899 $519723
STABLE
.89112
.00400
.00Uuno
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FREQ(2)

919723

FREQ(2)

919723

-+16043

FREQ(3)
2.395058

.23086 .23086

-.12482 12482

FREQ(3) + FREQ(1)
FREQ(3)

2395058

83091 -.57783
«01520 .00000

FREQ(3) + FREQ(2)
FREQ(3)

24395058

-018359
«00000 «00000



\
’

A

FORMAT (2) (continued)

CHARACTERISTIC VALUFS IN VICINITY OF FREQ(2) = FREQ(1)

T0 FREQ(1) FREQ(2) FREG(3)

20.0 « 247899 T «919723. 24395058

GAMMAZ 410, N=2,OMEGL=100.00s ETAS= «000¢ SPC=1.00» XG6= .5

KC= «60¢ KA= ,60¢ RI= .60

OMEGRB= .672 STABLE '
ROOTR -+911R5 -,50980 -.81120
ROOTI 00000 «00000 .00000

STAB1 00000
CHARACTERISTIC VALUES IN VICINITY OF FREQ(3) « FREQ(1)

TO FRENQ(1) FREG(2) FREQ(3)

0.0 .247899 «G19723 2.395058

GAMMAZ ,10s N=2,0McGL=100.00s ETAS .000s SPC=1.,00¢ XG= .5
RC= «60» RA= ,60¢ RIZ .6U

OMEGR= 2,147 STARLE

KOOTR «770NS 072547 -090064
rO0OTI «00000 «G0000 «00000
5TAB1 «00G0N0

CHARACTERISTIC VALUES IN VICINITY OF FREQ(3) = FREQ(2)

T0 FREQ(1) FREQ(2) FREQ(3)

20.0 « 287899 «919723 2.395058

GAMMA= +10Us N=2,0MeGL=100.000» ETA= 000y SPC=Z1.,00s XG= 5

RC= «60¢ RA= .60+ RI= 60U

OMEGB= 1.475 UNSTALLE
KOGTR +H485HR6 -071303 -.71303
ROOTI «00u00 -.,01819 .01819
5TAR1 «01218

A-54




(v

FORMAT (3)

To  FRFQ(1)

200 « 247899

RC= o60¢ RAZ= «60¢ RI= «60

OMEGR= 496
RONTR
ROOTI
STABL
OMEGR= ,446
ROOTR
ROOTI
STAR]
OMEGB= .397 STABLL
RONTR
ROOTI
5TaR}1
OMEGR= L4222 STARLE
ROODTR
ROOTI
S5TAR1
OMEGR=  .434
ROOTR
]ONTI
STAB1
OMEGRB= ,.545 STARBLE
#ODTR
ROOTI
STAR1
OMEGR= ,520
RONTR
KOOTI
STAR1
OMEGR=Z .533 STARLe
ROOTR
KOOTI
STAB1

UNSTABLE

UNSTAGLE

UNSTABLE

UNSTAsLE

\

TO0 FREQ(1)

20.0 « 247899

GAMMAZ 410+ N=2)0MEGL=100.,00s ETA=

GAMMAZ .10, N=2,0MEGL=100.00s ETA=

FREG(2)

«919723

63676
.000N0
«04109

«92018
00000
00538

38277
«000N0
«000600

40175

- »00000

00000

« 71851
00000
«00916

«96692
.000uno
+000u00

80219
«000N0
02420

99108
«00uN0O
«00G60NQ

FREQ(2)

919723

A-55

48731
«00000

—065350
«00000

-:43555
«00000

~.4u935
« 00000

-097765
-s01460

’033979
« 00000

18722
«00000

=-.10545
«00000

CHARACTERISTIC VALUES IN VICINITY OF 2 X FREQ(1)

FREQ(3)

2.395058

000, SPC=1,00, XG= .5

.00000

-1.00072
.00000

00000

-, 80647
.00000

-097765
«01460

=-,78556
.00000

-1.01069
00000

-.59942
.00000

CHARACTERISYIC VALUFS IN VICINITY OF 2 X FRFQ(2)

FREQ(3)
2.,395058

.000' SPC:1.00' XG= 05




FORMAT.(B) (continued)

RC= .60+ RA= ,600'91= «6U

OMEGR= 1,139 UNSTAGLE
KDOTR «66108 -e32187
rRONTI « 00000 .00000
STAR1 « 008624

OMEGR= 1.R30 STARLE
ROOTR 65754 -+ 36340
KOOTI « 00000 «00000
5TaB1 . ~,00000

OMEGR= 1.R34 UNSTAGLLFE
ROOTR ) : 65932 - 34266
rROOTI «00000 »00000
STARL + 00620

OMEGR= 1,832 UNSTAGLE
KONTR 65843 -, 35304
RONTI « 000600 « 00000
.5TAB1 «00228

OMEGR= 1,Ru49 STARLE
RONTR 66457 -.28016
RONT1 «00000 «00000
STAB1 -.00000

OMEGR= 1.844 UNSTAGLE
RONTR +HEZR3 -,30103
RKONT] .00000 . 00000
STAB1 « 00697

OMEGR= 1.847 UNSTALLE
RONTR «66370 ~-.29060
ROOTI « 00000 «00000
STAB1L 00452

UNSTABLE

A-56

-1.000610
.00000

-.99994
.00000

-1c00006
.00000

‘lcOOOOl
.0000Q

-099997
00000

=1.00007

.00000

-1,00003
.00000

CHARACTERISTIC VALUES IN VICINITY OF 2 X FREQ(3)

5

TO FREQ(1) FRKEQ(2) FREQ(3)
0.0 0247899 «919723 2.395058
GAMMAZ 410+ MZ2,0OMEGL=100.00s» ETA= ,000, SPC=1.00, XG=
RC= «60¢ RA= ,60¢ RI= .60
OMEGR= 4,790 UNSTABLE
rROOTR 94752 e 35639 =1,00037
ROOTI «00000 + 00000 00000
57AB1 e 04145
OMEGR= 4,740 STARLE
ROOTR 94642 « U453 -,99984
RONTI .000N0 «00000 .00000
STAB1 «00000
OMEGR= 4.765 UNSTABLE
ROOTR « 94697 35050 =~1,00024
ROOTI . 00000 «00000 «00000
STARY 003323
OMEGR= 4,753



{

OMEGR=
OMEGR=

OMEGB=

3

RONTR
RNOTI
STAB1
+«R40
RONTR
rOOTI
STAR1
4.R15
ROOTR
rROOTI
STAB1
4e.R27
ROOTR
RCOTI
STARY

FORMAT (3) (contim}ed)

STARLE
UNSTAGLE

~UNSTABLE

«94669
00000
01827

e 94558
«00000
«00000

«948N05
« 00000
« 03307

« U532
00000
«01782

A-57

38752
00000

« 36794
+00000

036220
.00000

+ 36508
«00000

7

-1.,00007
00000

.00000

-1,00023
.00000

~1.00007
.00000



" FORMAT (3) (continued)

T0 FREQ(1)

cNe0 287899

OMEGB= 1.168"
ROOTR
RONTI
STAR)Y .
1.111
ROOTR
ROOTI
STAB1L
l.13G
ROOTR
RONTI
STAR]
1.125
*0ONTR
ROOTI
STARY
1.225
ROOTR
ROOTI
STARL
1.1%6
XONTR
ROOT]
SsTAR}
1.210
ROOTR
ROOTI
STAB1

UNSTABLE

i

OMEGR= STABLE

OMEGR= UNSTAGLE
OMEGR= UNSTALLE
OMEGR= STARLE
OMEGR:

UNSTABLLE

OMEGR= UNSTABLE

Al

CHARACTERISTIC VALUES IN

TO FREQ(1)
2040 +247899
OMEGB= 2,643 UNSTALLE

RONTR
ROOTI
STABL
OMEGR= 2.615 STARLE
ROOTR
ROOTI
STAB1
 OMEGB= 2629 UNSTAGLE

CHARACTERISTIC VALUES IN VICINITY OF FREQ(2) + FREQ(1)

FREQ(2) FREQ(3)
0919723 24395058
« 94892 «23086 «23086
«00000 -e.12482 12482
« 04753
« 39889 «55181 «23435
«000UNQ «00000 .00000
«00unNg0
« 79970 «27357 «27357
« 00000 -+10255 «10255
« 03857
«BRENTD 29486 «2GHRG
00000 - 05907 + 05907
02212
«96118 23124 « 06337
«000N0 «»00000 .00000
-.00000
+» 99990 +«18850 18850
000000 -009672 -09672
«U3743
«993091 « 16772 016772
000000 ‘00u841 '04841
«01691
VICINITY OF FREQ(3) + FREQ(1)
FREQ(2) FREQ(3)
«919723 2395058
«83091 «83091 -057783
=,01520 201520 «00000
« 02297
: 085513 083505 -059648
« 00000 «00000 «00000
_.OOUOO
A-58

(




FORMAT (3) (cbntinued)

OMEGR=

OMEGR=

OMEGR=

OMEGR=

ROOTR
ROOTI
5TaBR1
2.R22
rONTR
OOTI
STAR]
2.R71
ROOTR
ROOTI
STAB1

KOOTR
ROOTI

ATy &

STARL .

2664
rROOTR
ROOTI
STAB1

UNSTABLE

STABLE

"UNSTABGLE

UNSTABLLE

CHARACTERISTIC VALUES IN

20.0

OMEGR=

3315
KOOTR
ROOTI

 STABL

FREQ(1)

«247899

STABLE

« 83615
-.011R7
«01620

« 84166
--00617
« 00953

«82566
.000600
00000

« 82337
-, 01244
« 018653

«81949
-~,00705
«01083

VICINITY OF FREQ(3)

FREG(2)

«G19723

«89112
«00uNno
«00000

A~59

«63815
01187

«84166
00617

«80544
00000

«82337
01244

«81949

«00705.

-,58715
.00000

-.59181
.00000

-.55927
00000

-.56854
00000

.00000

+ FREQ(2)

FREG(3)

2.395058

- .160‘#3
«00000

-.18359
.00000



i
»
\

FORMAT (3) (continued)

CHARACTERISTIC VALUFS IN VICINITY OF FREGQ(2) = FREQ(1)

70 FREQ(1) FREQ(2) FREQ(3)

2040 247899 +619723 2.395058

GAMMA= .10+ NZ2,0MEGL=100.,000 ETA= .000s SPC=1.00s X6= .5

RC: .60' RA: .60' RI: .6U

OMEGB= ,672 STARLE
RONTR -«9118R5 -+50980 -,81120
rROOTI .00000 00000 .00000
STAB1 000600

CHARACTERISTIC VALUES IN VICINITY OF FREQ(3) - FREQ(1)

T0 FREQ(1) FrEQ(2) FREQ(3)

20.0 247899 919723 ~ 2.395058

CAMMAZ ,10s NZ2/,0MEGLZ100.00» ETA= 000, SPC=1.00s XG6= .5

RC= o60¢r RA= 600 RI= 60

OMEGR= 2.147 STARLL '
ROOTR e« 77uUNS « 72547 -.50064
ROOT] . 004UN0 .00000 «00000
STAR1 .000Nn0

CHARACTERISTIC VALUES IN VICINITY OF FKFQ(3) = FREGQ(2)

TO FREQ(1) FKEQ(2) FREQ(3)

20.0 «247899 919723 2.395058

GAMMA= ,10+ N=2,0MEGL=100.00¢ ETA= L000, SPC=1,00s XG= .5

RC: '60' RA: 060' RI= .6U

OMEGR= 1.475 UNSTAGLE
ROOTR «485R6 ~-+71303 -.71303
ROOTI .00000 -.,01819 «01819
S5TAR1 «01218

OMEGR= 1.461 STABLE

ROOTI ' .00000 «00000 «00000

A-60



sSToP

FORMAT (3) (continued)

OMEGRZ=

OMEGR=

5TAR)
lL.468
RONTR
rOOTI
STAB]
1.464
ROOTR
ROOTI

- STAB1

OMEGR=

OMEGR=

OMEGR=

1.490

ROOTR

RONTI
STAR1
l.483
ROOTR
RONTI
STAR1
1.486
ROOTR
ROOTI
STaB1

UNSTAsLE

UNSTAuLE

STABLE

UNSTALLE

UNSTABLE

-.00000

e 48145
«00GN0
«01049

47932
«00000
«00710

+494LAS8
« 00600
+00000

« 43037
«000600
+ 00893

«U48262

00000
«0023S5

A-61

—068786
'001630

-067480
-.01124

~e74613
«00000

‘073692
-+01279

-.7&&38

-,68786
«N1630

-, 67480
.01124

=-,77290
00000

-.73692
«01279

00329




